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a b s t r a c t

We consider the problem of energy-efficient broadcasting on large ad-hoc networks.
Ad-hoc networks are generally modelled using random geometric graphs (RGGs). Here,
nodes are deployed uniformly in a square area around the origin, and any two nodes
which are within Euclidean distance of 1 are assumed to be able to receive each other’s
broadcast. A source node at the origin encodes k data packets of information into n (> k)
coded packets and transmits them to all its one-hop neighbours. The encoding is such
that, any node that receives at least k out of the n coded packets can retrieve the original
k data packets. Every other node in the network follows a probabilistic forwarding
protocol; upon reception of a previously unreceived packet, the node forwards it with
probability p and does nothing with probability 1−p. We are interested in the minimum
forwarding probability which ensures that a large fraction of nodes can decode the
information from the source. We deem this a near-broadcast. The performance metric
of interest is the expected total number of transmissions at this minimum forwarding
probability, where the expectation is over both the forwarding protocol as well as the
realization of the RGG. In comparison to probabilistic forwarding with no coding, our
treatment of the problem indicates that, with a judicious choice of n, it is possible to
reduce the expected total number of transmissions while ensuring a near-broadcast.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Ad-hoc networks are distributed networks with no centralized infrastructure. Applications involving the Internet of
hings (IoT), such as healthcare, smart factories and homes, intelligent transport etc., have led to wide-spread presence of
ense ad-hoc networks. Individual nodes in these networks are typically low-cost and energy-constrained, having limited
omputational ability and knowledge of the network topology.
Wireless ad-hoc networks are often modelled using random network models. In particular, random geometric graphs

RGGs) have been used in the literature to model spatially distributed networks (see e.g. [1,2]). These are generated by
cattering (a Poisson number of) nodes in a finite area uniformly at random and connecting nodes within a pre-specified
istance. The random distribution of nodes captures the variability in the deployment of the nodes of an ad-hoc network.
he distance threshold conforms to the maximum range at which a transmission from a node, with maximum power, is
eceived reliably. A more formal description of our network setting is provided in Section 3.
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Exchange of network-critical information for network control and routing happens primarily through broadcast mech-
nisms in these networks. A considerable number of broadcast mechanisms have been proposed in the literature. Naive
lgorithms such as flooding, although being light-weight and easy to implement, give rise to unnecessary transmissions
nd hence are not energy efficient. Flooding is also known to result in the ‘broadcast-storm’ problem (see [3]).
Probabilistic forwarding as a broadcast mechanism (see e.g., [4–6]) has been proposed in the literature as an alternative

o flooding. Here, each node, on receiving a packet for the first time, either forwards it to all its one-hop neighbours with
robability p or takes no action with probability 1 − p. While this mechanism reduces the number of transmissions,
eception of a packet by a network node is not guaranteed.

To improve the chances of a network node receiving a packet and to handle packet drops, we introduce coding along
ith probabilistic forwarding. Let us suppose that the source possesses ks message packets which need to be broadcast.
hese ks message packets are first encoded into n coded packets such that, for some k ≥ ks, the reception of any k out of
he n coded packets by a node, suffices to retrieve the original ks message packets. Examples of codes with this property
re Maximum Distance Separable (MDS) codes (k = ks), fountain codes (k = ks(1 + ϵ) for some ϵ > 0) etc. which are
sed in practice.
The source transmits the n coded packets to its one-hop neighbours and every other node in the network employs the

robabilistic forwarding mechanism described above. Subsequent receptions of the same packet by a network node are
eglected.
In this paper, we analyse the performance of the above algorithm on RGGs. In particular, we wish to find the minimum

etransmission probability p for which the expected fraction of nodes receiving at least k out of the n coded packets is close
o 1, which we deem a ‘‘near-broadcast’’. Here, it is to be clarified that the expectation is over both the realization of the
GG and the probabilistic forwarding protocol. This probability yields the minimum value for the expected total number
f transmissions across all the network nodes needed for a near-broadcast. The expected total number of transmissions
s taken to be a measure of the energy expenditure in the network.

To the best of our knowledge, we are the first to propose an algorithm that combines coding with a probabilistic
orwarding based broadcast mechanism. (A survey of the related literature is provided in Section 2.) Specifically, the
ovelty in our proposed algorithm is to introduce redundancy in the form of coded packets into the probabilistic
orwarding mechanism. The randomness brought about by the probabilistic forwarding algorithm can be compensated
y the structural properties of the code we employ. This results in a simple, light-weight broadcast algorithm suitable for
istributed implementation on ad-hoc networks.
In our previous work [7], we analysed the probabilistic forwarding mechanism described here on deterministic graphs

uch as trees and grids. It was found that introducing coded packets with probabilistic forwarding offered significant
nergy benefits in terms of the number of transmissions needed for a near-broadcast on well-connected graphs such as
rids and other lattice structures. However, for d-regular trees, such energy savings were not observed. RGGs (in the
uper-critical regime) show similar behaviour as grids, i.e., for an intelligently chosen value of the number of coded
ackets, n, and the minimum forwarding probability, the energy expenditure in the network is considerably lesser for
near-broadcast, when compared to the scenario of probabilistic forwarding with no coding.
In this paper, we justify these observations using rigorous methods. Specifically, this work aims to build a mathematical

ramework to analyse the effect of introducing coding along with probabilistic forwarding for broadcasting on RGGs, which
orm an important class of models for ad-hoc networks. While some of the techniques used in our analysis are similar to
hose used for broadcasting on the grid in [7], we stress here that the additional complications due to the randomness of
he underlying graph calls for the use of more sophisticated techniques. Ideas from continuum percolation, ergodic theory
nd Palm theory are employed to circumvent some of the technicalities encountered. These mathematical techniques
ould be of independent interest for related problems. Moreover, our method of analysis may also extend to more general
roadcasting models and other point processes. Thus, we believe that our analysis of the proposed algorithm is in fact
ne of the more useful contributions of this paper.
The rest of the paper is organized as follows. Section 2 provides a literature overview of broadcast mechanisms for ad-

oc networks. In Section 3, we describe our network setup and formulate our problem. Section 4 provides the simulation
esults of the probabilistic forwarding algorithm on RGGs. In Section 5, we provide definitions and notations of RGGs
n R2. Marked point processes (MPPs) are introduced to model probabilistic forwarding on the RGG. Section 6 relates
robabilistic forwarding and marked point processes. Ergodic theorems on MPPs are used to obtain some key quantities.
hese will serve as the main ingredients in the analysis of the proposed algorithm on RGGs. Our main results are presented
n Section 7, culminating in estimates for the minimum retransmission probability (see (20)) and the associated expected
otal number of transmissions (see (18)). Since the estimate for the minimum retransmission probability is difficult to
ompute explicitly, in Section 8, we provide a heuristic approach which is used to compare the expressions obtained
heoretically with the simulation results. Section 9 discusses some aspects related to the assumptions and our results. In
ection 10, some questions arising from this work are highlighted as possible future directions of research. The appendix
ontains technical results pertaining to the Palm expectations and the proof of one of our main theorems.

. Related work

Algorithms for broadcast over ad-hoc networks have garnered considerable attention in the past. We refer the reader
o [8–10] and the references therein for a review of the broad categories of algorithms employed for broadcasting. We
2
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further supplement this list with references relevant to our work here. The broadcast algorithm proposed and analysed in
this paper is an amalgamation of probabilistic forwarding along with encoding of packets at the source. In the following,
we highlight relevant literature from these two areas.

2.1. Coding based approaches

Network coding
Network coding has been used for efficient data dissemination in wireless networks in [9–14]. In [11], the authors

ropose random linear network coding (RLNC) for the multicast problem and give bounds on the probability that all
he receivers are successful in obtaining the packets. The authors in [13] compare the number of transmissions in the
LNC based approach with that of store-and-forward approaches (which includes probabilistic forwarding) on a circular
etwork topology. Network coding schemes are shown to be energy-efficient. Similar deductions are made via simulations
n [14] for employing network coding in a medical sensor network. In [12], the authors provide transmission strategies
or universal recovery and arrive at necessary and sufficient conditions on the number of transmissions required using
etwork coding. However they assume complete knowledge of the network topology at every node.
Our work is closest in spirit to that in [9], where the authors propose a low-complexity distributed broadcast algorithm

hat improves upon the number of transmissions in flooding by a constant factor. Their approach based on network coding
s well-suited for broadcasting on networks where individual nodes do not have any knowledge of the network topology,
specially since, in their setting, all the nodes in the network have messages to broadcast. On the other hand, in our case,
nly a single source node has messages that need to be broadcast. This makes the two works incomparable.

ther coding schemes
Unlike network coding schemes, in our work, packets are encoded only at the source before transmission. The class of

odes that we propose includes, among others, fountain codes, which have been used widely in broadcast mechanisms
or ad-hoc networks. This is primarily because they form a convenient alternative to the ARQ (Automatic Repeat Request)
rotocol. In the ARQ scheme, an acknowledgement (ACK) needs to be sent every time a packet is received. By employing
ountain codes, a node is required to send an ACK less frequently, thus saving on energy.

The authors in [15] employ fountain codes for broadcasting in vehicular networks. However, unlike our setting, all
he nodes are in a star topology and receive transmissions from the source through erasure channels. In [16,17], the
uthors use Luby transform (LT) codes, a special case of fountain codes, which reduces the complexity of encoding and
ecoding at the network nodes. The LT encoding is done by randomly selecting d packets from n packets and doing an
OR of these packets to form a single encoded packet. The authors in [16] propose to employ LT codes in conjunction
ith transmission over a source-independent backbone network. They show via simulations that this approach not only
educes the number of transmissions required for flooding, but also reduces the packet delay. The variable d is an integer
hich is chosen according to a distribution. In [17], the authors propose a new distribution on dwhich further brings down
he delay and the number of transmissions. However, both these approaches require the knowledge of a dominating set
hich is a subset of nodes of the network such that every node in the network is either in this set or adjacent to a node of
his set. Finding a dominating set is computationally expensive. In [18], the authors construct novel codes called rateless
nline MDS (ROME) codes for wireless broadcasting. They are shown to have lesser coding redundancy and number of
ransmissions as compared to LT codes. However, they exploit feedback information from the receivers.

.2. Probabilistic forwarding based approaches

Probabilistic forwarding mechanism, as described in Section 1, forms an energy-efficient alternative to the flood-
ng mechanism. An excellent summary of the recent literature on probabilistic broadcast mechanisms is provided in
4, Chapter 3].

OSSIP algorithm and variants
Probabilistic forwarding has also been referred to as the GOSSIP1(p) algorithm in [6]. The authors claim a 35% reduction

n the transmission overhead as compared to flooding. Further, several variants of the probabilistic GOSSIP1(p) protocol are
escribed, and heuristics and simulation results are provided for improving flooding and routing mechanisms in networks.
There have been numerous other works, for example see [19–23], which propose improvements on the GOSSIP

rotocol. In [20], the authors target a similar problem as ours: achieve a high degree of network coverage with limited
umber of transmissions. They even employ very similar analytical techniques based on continuum percolation to
haracterize two gossip algorithms: global gossip and distributed gossip. However, they assume some knowledge of
he average degree of the random planar network at every node of the network. The authors in [24] propose a novel
pproach to combine tree-based and gossip protocols in order to achieve both lowmessage complexity and high reliability.
ypergossiping has been proposed in [21] to overcome problems of connectivity in mobile ad-hoc networks. In [23],
he authors propose the smart gossip protocol which aims to adaptively set the forwarding probability at each node by
uantifying the ‘‘importance’’ of each node for achieving dissemination. However, all of these works evaluate the proposed
lgorithm using extensive simulations and lack sound analytical characterization.
3
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Choice of forwarding probability

A significant portion of the literature on probabilistic forwarding dwells upon setting the forwarding probability based
n different approaches, some of which are highlighted below:

• Neighbour based approaches [25–30]: In these schemes, the forwarding probability is decided based on the number
of neighbours or the density of nodes in a region. The main rationale behind this approach is that, higher the density
or the number of one-hop neighbours, lower the forwarding probability.

• Area/distance based approaches [31–34]: In area-based schemes, the forwarding probability is set based on an
estimate of the additional area that will be covered by a node if it transmits. This additional area is estimated based
on either the number of copies a node receives or the distance from the node whose transmission it receives.

• Interference based schemes [35,36]: In such schemes, nodes in the network choose a forwarding probability based
on the signal strength with which they receive packets. Received signal strength is an indication of the channel
quality, and hence nodes transmit with higher probability when the channel is good.

There are numerous other approaches which combine different methods to set the forwarding probability. The
nterested reader is referred to the survey paper [37] and Chapter 3 of [4].

While choosing the forwarding probability in a meaningful manner is also a motivation for our work, there are
wo main differences between the previously considered schemes and ours. Firstly, the previous schemes require some
nowledge about the network topology, either in terms of the number of neighbours or distance from a nearest node
tc., which we do not assume in our work. Secondly, and more importantly, most of these are simulation-based studies
ith no analytical backing. Our aim in this work is to provide a robust analytical framework to the algorithm we propose
hich can perhaps be extended to analyse some of these algorithms as well.

ther variants of probabilistic forwarding
The authors in [38] map randomized broadcast mechanisms to percolation on networks, which is the approach we

ake here as well. They, however, use directional antennas to reduce the transmission overhead and map it to a bond
ercolation problem. In [39], the authors propose Robust Probabilistic Flooding mechanism which takes into account the
nergy-harvesting nodes and the times they are active. The works in [40,41] consider broadcast problems on topologies
imilar to ours but a different mechanism. In [40], the authors model each edge of a tree as a binary symmetric channel and
im to recover the data present at the root of the tree using information from the nodes at level ℓ. Similar considerations
re discussed on an infinite directed acyclic graph with the form of a 2D regular grid in [41].

. Problem formulation

We begin by describing our setting for the specific case of random geometric graphs. This section introduces additional
otation specific to RGGs as well.

.1. Network setup

A random geometric graph is parametrized by the intensity λ and the distance threshold r . It suffices to study them
y keeping one of the parameters fixed. In our treatment, we will fix the distance parameter r to be equal to 1, and study
arious properties as a function of the intensity, λ.
Construct a random geometric graph Gm with intensity λ and distance threshold r = 1 on Γm :=

[
−m
2 , m

2

]2 as follows:

• Step 1: Sample the number of points, N , from a Poisson distribution with mean λν(Γm). Here, ν(·) is the Lebesgue
measure on R2. Therefore, N ∼ Poi(λm2).

• Step 2: Choose points X1, X2, . . . , XN uniformly and independently from Γm. These form the points of a Poisson point
process (see [42, Section 2.5]) Φ , and constitute the vertex set of Gm.

• Step 3: Place an edge between any two vertices which are within Euclidean distance r = 1 of each other.

o carry out probabilistic forwarding over Gm, we need to fix a source. For this, we will assume that there is a point at
he origin 0 = (0, 0) ∈ R2. More specifically, a graph G0

m is created with the underlying point process Φ0 ≜ Φ ∪ {0}, as
he vertex set and introducing additional edges from 0 to nodes which are within B1(0), to the edge set of Gm. Here, B1(0)
more generally, B1(v) for v ∈ R2) is a closed Euclidean ball of radius 1 centred at 0 (v).

The inclusion of an additional point at the origin 0 means that all the probabilistic computations need to be made with
espect to the Palm probability given a point at the origin. We direct the reader to [43, Ch. 1.4] for an in-depth treatment
f Palm theory. Heuristically, the Palm probability must be interpreted as the probability conditional on the event that
he origin is a point of the point process. We denote the Palm probability by P0 and the expectation with respect to it by
0.
The origin here is a distinguished vertex. Broadcasts initiated from it can be received by the nodes which are present

n the component of the origin only. Denote by C0 ≡ C0(G0
m), the set of nodes in the component of the origin in G0

m. The
omponent of the origin in G0 forms the underlying connected graph, which we denote by G.
m

4
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3.2. Probabilistic forwarding on RGG

Equipped with the underlying network, G, we now describe the probabilistic forwarding algorithm on it. The source,
, encodes ks message packets into n coded packets and indexes them using integers from 1 to n. It then broadcasts
ach of these packets individually, which are received by all its one-hop neighbours. Every other node in the network,
pon reception of a packet (say packet #j) uses the probabilistic forwarding mechanism: it broadcasts the packet with
robability p and takes no action with probability 1− p. A packet forwarded by a node (a single broadcast) is received by
ll its one-hop neighbours. Each packet is forwarded independently of other packets and other nodes. The node ignores
ll subsequent receptions of packet #j, irrespective of the decision it took at the time of first reception. Packet collisions
nd interference effects are neglected. See Section 9.2 for a discussion of this assumption.
We are interested in the following scenario. Let Rk,n(G) be the number of nodes in C0 that receive at least k out of the n

coded packets in G. We refer to these as successful receivers. We sometimes denote this by Rk,n(G0
m) to explicitly bring out

the dependence on m. Given a δ > 0, we are interested in the minimum forwarding probability p, such that the expected
fraction of successful receivers is at least 1 − δ. The expectation here is over the probabilistic forwarding protocol for
a fixed realization of G. In reality, the proposed broadcasting algorithm of probabilistic forwarding with coded packets,
should give a good performance for any realization of the underlying graph. In other words, we would want the expected
fraction of successful receivers to be at least 1 − δ, for every realization of G. However, in our formulation we relax this
ondition by asking for it only in an expected sense. More specifically, we define

pk,n,δ = inf
{
p
⏐⏐⏐ E

[
Rk,n(G0

m)
|C0(G0

m)|

]
≥ 1 − δ

}
, (1)

where the expectation is over both the graph G0
m as well as the probabilistic forwarding mechanism. Note that, from

our construction, Rk,n(G) = Rk,n(G0
m) ⊆ C0(G0

m). The number of successful receivers is normalized by the total number of
vertices in G, which is the same as the number of vertices within the component of the origin, |C0(G0

m)|.
The performance measure of interest, denoted by τk,n,δ , is the expected total number of transmissions across all nodes

hen the forwarding probability is set to pk,n,δ . Here, it should be clarified that whenever a node forwards a packet to
ll its one-hop neighbours, it is counted as a single broadcast transmission. Our aim is to determine, for a given k and δ,
ow τk,n,δ varies with n, and the value of n at which it is minimized (if it is indeed minimized). To this end, it is necessary
o first understand the behaviour of pk,n,δ as a function of n. In subsequent sections, we will formulate the probabilistic
orwarding mechanism as a marked point process and use results from ergodic theory to obtain the expected value of
he number of successful receivers and the overall number of transmissions.

. Simulation results

In this section, we provide simulation results of our algorithm on random geometric graphs. For simulations on other
etwork topologies, we refer the reader to [7,44].
Simulations of the probabilistic forwarding mechanism with coded packets were performed on an RGG generated with
= 101 and intensity λ = 4.5 and 4. As stated before, the distance threshold parameter r was set to 1. The probabilistic

orwarding mechanism was carried out with k = 20 packets and n varying from 20 to 40. The value of δ was set to 0.1.
wenty realizations of G were generated and 10 iterations of the probabilistic forwarding mechanism was carried out
n each of the realizations. The fraction of successful receivers was averaged over each iteration and realization of the
raph. This was used to find the minimum forwarding probability, pk,n,δ , required for a near-broadcast, which is plotted

in Fig. 1(a). The bars indicate bounds on pk,n,δ obtained using a 95% confidence interval around the computed empirical
average for the number of successful receivers. The pk,n,δ values so obtained were further used to find the expected total
umber of transmissions over the same realizations. The expected total number of transmissions τk,n,δ , normalized by
m2, which is the average number of points within Γm, is shown in Fig. 1(b) along with a 95% confidence interval around
he empirical average. This can be interpreted as the average number of transmissions per node in the graph.

Notice that the expected number of transmissions decreases initially to a minimum and then increases. The decrease
ndicates the benefit of introducing coding along with probabilistic forwarding. The number of coded packets, n, and the
robability, pk,n,δ , corresponding to the minimum point of Fig. 1(b) are the ideal parameters for operating the network to
btain maximum energy benefits.
Further, it can be observed from Fig. 1(a), that the minimum forwarding probability, pk,n,δ , decreases to 0 with n. This

s formalized in the following lemma.

emma 4.1. For fixed values of k and δ,

(a) pk,n,δ is a non-increasing function of n.
(b) pk,n,δ → 0 as n → ∞.

The proof is along similar lines as that for deterministic graphs expounded in [7]. However, unlike in deterministic
raphs where the total number of nodes in the graph is a constant (N), here, the denominator in the expression for
5



B.R. Vinay Kumar, N. Kashyap and D. Yogeshwaran Performance Evaluation 160 (2023) 102343

A

Fig. 1. Simulations on a random geometric graph generated on Γ101 with intensity λ and distance threshold r = 1. Probabilistic forwarding done
with k = 20 packets and δ = 0.1. The error bars correspond to a 95% confidence interval computed around the empirical averages.

the fraction of successful receivers comprises of the nodes in the component of the origin (see (1)), which is a random
quantity. Nevertheless, conditioning on the underlying point process, Φ , gives a deterministic graph, on which the result
for deterministic graphs can be used.

Proof. (a) Denote a realization of the random geometric graph G by g . Let us define Eg to be the expectation over the
probabilistic forwarding protocol when the underlying graph is g . Using the tower property of expectation, we obtain

E
[
Rk,n

N

]
= E

[
E
[
Rk,n

N

⏐⏐⏐ G]] .

Conditioned on a realization g of G, N (≡ |C0(G0
m)|) is fixed and it is true that Eg

[
Rk,n
N

]
≥ Eg

[
Rk,n−1

N

]
due to a similar

coupling argument as in [7, Lemma 1]. Therefore, we have that pk,n,δ is a non-increasing function of n even when the
underlying graph is random.

(b) For the second part, create ⌊
n
k ⌋ non-overlapping (i.e., disjoint) groups of k packets each. For i = 1, 2, . . . , ⌊ n

k ⌋, let
i be the event that the ith group of k coded packets is received by at least (1 − δ/2)N nodes. For a fixed realization g

of the RGG, the randomness arises only because of the probabilistic forwarding mechanism. Since packets are forwarded
independently of each other, and any two events Ai and Aj, for i ̸= j, depend on disjoint sets of packets (for fixed g),
they are independent conditioned on the RGG. In other words, conditional on G = g , the events Ai are independent
and identically distributed (iid). Moreover, since we have a deterministic graph g , proceeding as in [7, Lemma 1], for all
sufficiently large n we have that Eg

[
Rk,n
N

]
≥ 1 − δ for any realization g of G. Therefore E

[
Rk,n
N

]
can be made arbitrarily

close to 1 for sufficiently large n. This in turn means that pk,n,δ → 0 as n → ∞. □

5. Point process preliminaries

In this section, we introduce the tools required to characterize the performance of the probabilistic forwarding
algorithm. The probabilistic forwarding mechanism on the RGG is modelled using marked point processes which are
described here.

5.1. Random geometric graphs on R2

Our approach to analysing the probabilistic forwarding mechanism on G is to relate it to the probabilistic forwarding
mechanism on a RGG generated on the whole R2 plane with the origin as the source. This means that the vertex set of
the RGG is a Poisson point process, Φ , on R2. We refer the reader to [2] or [43] for the background needed on Poisson
point processes. In particular, we use the procedure outlined in [43, Section 1.3] to construct the RGG on the whole R2

plane.
Create a tiling of the R2 plane with translations of Γm, i.e., Γi,j := (im, jm) + Γm for i, j ∈ Z. On each such translation,

Γi,j, construct an independent copy of a Poisson point process with intensity λ as described in steps 1 and 2 of Section 3.1.
The random geometric graph (G) is constructed by connecting vertices which are within distance 1 of each other. We then
say G ∼ RGG(λ, 1).

It is known that the RGG(λ, 1) model on R2 shows a phase transition phenomenon (see e.g. [45]). For λ > λc , the
critical intensity, there exists a unique infinite cluster, C ≡ C(Φ), in the RGG almost surely. The value of λc is not exactly
known, but simulation studies such as [46] indicate that λc ≈ 1.44. The percolation probability θ (λ) is defined as the
probability that the origin is present in the infinite cluster C , i.e., θ (λ) := P0(0 ∈ C). We remark here that there is no
known analytical expression for θ (λ) nor are there good approximations. Since we are interested in large networks, we
will assume throughout our analysis that we operate in the super-critical region, i.e., λ > λ .
c

6
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f

a

5.2. Marked point process

During the course of the probabilistic forwarding protocol on the RGG, each node decides independently whether to
orward a particular packet with probability p. Marked point processes (MPPs) turn out to be a natural way to model such
functions of an underlying point process.

Definition 5.1. Let Φ =
∑

i εXi
1 be a Poisson point process on R2. With each point Xi of Φ , associate a mark Zi taking

values in some measurable space (K,K) such that {Zi}i∈N
iid
∼ Π (·). Then, Φ̃ =

∑
i ε(Xi,Zi) is called an iid marked point process

on R2
× K with mark distribution Π (·).

We now state an ergodic theorem for MPPs which is used to obtain some key results required in the analysis of the
probabilistic forwarding protocol in Section 6.

5.3. Ergodic theorem

Let (Ω,F,P) be the probability space over which an iid marked point process Φ̃ =
∑

i ε(Xi,Zi) is defined with mark
distribution Π (·). Let θx : Ω → Ω , for x ∈ R2, be the operator which shifts each point of Φ̃ by −x, i.e., θxΦ̃ =

∑
i ε(Xi−x,Zi)

and let (K,K) be the measurable space of marks. Let f : K × Ω → R+ be a non-negative function of the MPP. Then, by
the ergodic theorem for marked random measures (see [47, Theorem 8.4.4]), we have

1
ν(Γm)

∑
Xi∈Γm

f (Zi, θXi (ω)) → λ

∫
K
E(0,z) [f (z, ω)]Π (dz) P-a.s. (2)

s m → ∞, where E(0,z) is the expectation with respect to the Palm probability P(0,z) conditional on the mark, z. If
f (z, ω) = f (ω), then (2) reduces to

1
ν(Γm)

∑
Xi∈Γm

f (θXi (ω))
m→∞
−→ λE0 [f (ω)] P-a.s. (3)

6. Probabilistic forwarding and MPPs

In this section, we formulate the probabilistic forwarding mechanism using the framework of marked point processes
(MPPs). Ergodic theorems applied to MPPs are used to obtain the limiting values for the fraction of nodes in the infinite
cluster (8) and in the infinite extended cluster (11). These help in obtaining estimates for pk,n,δ and τk,n,δ in Section 7. It
should be noted here that all the graphs and point processes discussed in this section are defined on the whole R2 plane.

6.1. Single packet probabilistic forwarding

Consider the probabilistic forwarding of a single packet on G ∼ RGG(Φ, 1) defined on a Poisson point process (PPP)
Φ of intensity λ on R2. Let G0 be the graph created with the underlying point process being Φ0 ≜ Φ ∪ {0} as the vertex
set, and introducing additional edges from 0 to nodes which are within B1(0), to the edge set of G. We assign a mark 1
to a node if it decides to transmit the packet and 0 otherwise. Thus, the mark space is K = {0, 1} and Φ̃ is an iid MPP
with a Ber(p) mark distribution. Note that the origin, 0, has mark 1 since it always transmits the packet. Also, the subset
of nodes which have mark 1 form a thinned point process of intensity λp, and the subset of vertices with mark 0 form a
λ(1 − p)–thinned process. Denote these by Φ+ and Φ− respectively, and the corresponding RGGs by G+ and G−. Notice
that the set of vertices of Φ+ which are in the same cluster as the origin are the vertices which receive the packet from
the source and transmit it. Thus, the number of vertices in the cluster containing the origin in G+ (call this set of nodes
|C+

0 |), is the number of transmissions of the packet.
In addition to the nodes of the cluster containing the origin in G+, the nodes of G− which are within distance 1 from

them, also receive the packet. To account for them, we define for any cluster of nodes S ⊂ Φ+, the boundary of S as

∂S = {v ∈ Φ−
|B1(v) ∩ S ̸= ∅},

and the extended cluster of S to be Sext = S∪∂S. Then, the receivers are the nodes in Cext
0 . We refer to this as the extended

cluster of the origin.
Our interest is in large networks in which the origin is likely to be in the infinite cluster of G0. Moreover, since we are

interested in a large fraction of nodes in the network to be successful receivers, the extended cluster of the origin has
to comprise of a significant number of nodes within Γm. In the limit of large m, this means that the extended cluster of
the origin is the infinite extended cluster (IEC), Cext, defined as the extended cluster of C+

:= C(Φ+). This also means that
the transmitters correspond to the nodes within Γm of the infinite cluster of Φ+, C+. Thus, in the thermodynamic limit,

1 Here ε is the Dirac measure at x; for A ⊂ R2, ε (A) = 1 if x ∈ A and ε (A) = 0 if x /∈ A.
x x x

7
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Fig. 2. Percolation probability θ (λ) vs. intensity λ.

he expected number of vertices in C0 ∩ Γm (resp. Cext
0 ∩ Γm) is well-approximated by the expected number of vertices

ithin Γm of the infinite cluster C+ (resp., of the IEC Cext) for large m. We use the ergodic theorem stated in Section 5.3
o obtain almost sure results for the fraction of nodes within Γm of the infinite cluster C+ and the IEC Cext in terms of the
ercolation probability θ (λ).

.2. Application of the ergodic theorem

Specializing the statement in (2) to the probabilistic forwarding of a single packet where K = {0, 1} and the marks
re independent, conditional on Φ , with distribution given by Π (1) = 1 − Π (0) = p, we obtain,

1
ν(Γm)

∑
Xi∈Γm

f (Zi, θXi (ω))

m→∞
−→ λpE(0,1)

[f (1, ω)] + λ(1 − p) E(0,0)
[f (0, ω)] P-a.s. (4)

We will now use (3) and (4) to obtain key results which will be used to analyse the probabilistic forwarding of a single
packet on R2. In particular, we substitute different functions f in (3) and (4) to obtain the following results:

• f (z, ω) = 1. The ergodic theorem in (3) results in
Φ(Γm)
ν(Γm)

m→∞
−→ λ P-a.s. (5)

As a corollary, taking the reciprocals, we obtain

m2

Φ(Γm)
m→∞
−→

1
λ

P-a.s., (6)

which holds in our setting since λ > λc .
• f (z, ω) = z. Substituting in (4), we see that the sum on the LHS counts the number of nodes which have mark 1 in

Γm. Indeed, we obtain

Φ+(Γm)
ν(Γm)

m→∞
−→ λp P-a.s. (7)

• Let C be the unique infinite cluster in G. Using the ergodic theorem in (3) with f (z, ω) = 1{0 ∈ C}, we see that the
sum on the LHS counts the number of vertices of Φ which are present in the infinite cluster. Then, we have that

|C ∩ Γm|

ν(Γm)
m→∞
−→ λ θ (λ) P-a.s. (8)

Using the dominated convergence theorem (DCT) and (6), we also have that

E
[

|C ∩ Γm|

Φ(Γm)

]
m→∞
−→ θ (λ). (9)

This means that, for largem, the expected fraction of vertices of the infinite cluster within Γm is a good approximation
for the percolation probability. We use this to obtain an empirical estimate of the percolation probability as follows.
We generate 100 instantiations of the RGG(λ, 1) model on Γ251, for each value of λ between 1 and 5 (in steps of
0.01). The average number of vertices in the largest cluster within Γ251 is computed and taken as a proxy for the
fraction of nodes of the infinite cluster. The graph obtained is shown in Fig. 2. We use the values from this plot in
our numerical results. Similar plots are obtained in other works such as [48–50].

• Suppose λp > λc , so that G+ operates in the super-critical region. Let C+ be the unique infinite cluster in G+. Since
Φ+ is a thinned point process of intensity λp, we can use the result from (8) for the infinite cluster C+ to obtain

|C+
∩ Γm| m→∞

−→ λp θ (λp) P-a.s. (10)

ν(Γm)

8
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• Suppose that λp > λc and let Cext denote the extended cluster of C+, i.e. Cext
= C+

∪ ∂C+. Note that since
C+ is infinite, Cext is also infinite. Hence, we refer to it as the infinite extended cluster, or IEC for short. Take
f (ω) = 1(B1(0) ∩ C(Φ+) ̸= ∅). Observe that {Xi ∈ Cext

} = 1(B1(Xi) ∩ C(Φ+) ̸= ∅) = f (θXiw). So, using (3), we
have that

1
ν(Γm)

∑
Xi∈Γm

1{Xi ∈ Cext
}

m→∞
−→ λP(B1(0) ∩ C(Φ+) ̸= ∅) P-a.s.

By definition, P(B1(0) ∩ C(Φ+) ̸= ∅) = θ (λp), the percolation probability of Φ+. We then have,

|Cext
∩ Γm|

ν(Γm)
m→∞
−→ λθ (λp) P-a.s. (11)

Thus, it is natural to define, θ ext(λ, p) := P0(0 ∈ Cext) = θ (λp).
Comparing RHS of (7) and (11) suggests an alternate viewpoint for the nodes that are present in the IEC. On the
underlying point process Φ , define new iid marks Z ′

∈ K = {0, 1} with Ber(θ ext(λ, p)) distribution. This means
that a vertex is attributed mark 1, if it is in the IEC when probabilistic forwarding is carried out with forwarding
probability p. Then, the fraction of nodes in the IEC when marks are Z corresponds to the fraction of nodes with mark
1 when marks are Z ′. This interpretation will be useful in proposing a heuristic approach for probabilistic forwarding
of multiple packets in Section 8.

6.3. Probabilistic forwarding of multiple packets

Consider now the probabilistic forwarding mechanism on n packets. Each node transmits a newly received packet
with probability p independently of other packets. It is required to find the fraction of successful receivers, the nodes that
receive at least k out of the n packets. From our discussion of probabilistic forwarding of a single packet (in Section 6.1),
for large m, the number of nodes within Γm that receive a packet from the origin is well-approximated by the number of
nodes in the IEC. In a similar way, the fraction of successful receivers within Γm can be well approximated by the fraction
of nodes which are present in at least k out of the n IECs when probabilistic forwarding is done on the RGG, G0. In this
subsection, we will use the ergodic theorem and obtain explicit bounds on this fraction.

Equip each vertex of the point process Φ with mark Z = (Z1, Z2, . . . , Zn) ∈ K = {0, 1}n. Here the jth co-ordinate of
the mark represents transmission of the jth packet on Φ . More precisely, Zj(·) ∼ Ber(p) and, for two different vertices u
and v, Z(Xu) and Z(Xv) are independent conditional on Φ . Therefore, it forms an iid marked point process. Define Cext

k,n to
be the set of nodes which are present in at least k out of the n IECs. Taking f (z, ω) = 1{0 ∈ Cext

k,n } in the statement of the
ergodic theorem, we obtain

1
ν(Γm)

∑
Xi∈Γm

1{Xi ∈ Cext
k,n }

m→∞
−→ λ P0(0 ∈ Cext

k,n ) P-a.s.

Denote by θ ext
k,n (λ, p) := P0(0 ∈ Cext

k,n ). Then the above statement reads as

lim
m→∞

|Cext
k,n ∩ Γm|

ν(Γm)
= λ θ ext

k,n (λ, p) P-a.s. (12)

7. Main results

In this section, we obtain expressions for pk,n,δ and τk,n,δ on the finite graph G based on the framework that has been
developed in the previous section. Theorems 7.6 and 7.7 provide the limiting values of the expected fraction of transmitters
and the expected fraction of successful receivers respectively, which are then used to obtain the estimates for τk,n,δ (in
(18)) and pk,n,δ (in (20)). Prior to that, we first address some technical hurdles that arise while mapping the probabilistic
forwarding mechanism on the finite graph to the MPP on R2.

While constructing G0 (as described in Section 6.1), the graph corresponding to Γ0,0 can be taken to be G0
m (with

additional edges from vertices in Γ0,0 to those outside it). Alternately, G0
m can be constructed by considering a restriction

of G ∼ RGG(λ, 1) to Γm and connecting the origin to nodes within B1(0). In essence, it is true that the distribution of
nodes of G0

m and G0
∩Γm is the same. Recall that the graph G on which the probabilistic forwarding mechanism is carried

out, is the component of the origin in G0
m. In light of the correspondence between the vertices of G0

m and G0
∩ Γm, the

graph G should correspond to the graph induced on the nodes within Γm that are present in the cluster of the origin
in G0. However, these nodes also include those that are contained in the cluster of the origin through paths which go
outside Γm but are not connected to the origin within Γm (see Fig. 3). We refer to these as, nodes in the cluster of the
origin but without a Γm-conduit and denote them by Ĉ0,m. The following theorem states that the number of nodes without
Γ -conduits normalized by the area of Γ converges almost surely to 0.
m m

9
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Fig. 3. Circuit in the annulus Γm−1 \ Γr .

Theorem 7.1. For λ > λc ,

lim
m→∞

|̂C0,m|

m2 = 0 P-a.s.

s a consequence, we have

lim
m→∞

|C0(G0
m)|

λm2 = lim
m→∞

|C0(G0) ∩ Γm|

λm2 P-a.s.,

where C0(G0) is the set of nodes in the cluster of the origin in G0.

The latter part of the theorem is obtained by noting that C0(G0) ∩ Γm = C0(G0
m) ∪ Ĉ0,m with C0(G0

m) ∩ Ĉ0,m = ∅.
For the first part, we divide the nodes in Ĉ0,m into those which are present within a smaller concentric r × r area Γr , for

< m, and those in Γm \ Γr (see Fig. 3). Denote these by

Ŝr,m = Ĉ0,m ∩ Γr and T̂r,m = Ĉ0,m \ Ŝr,m

espectively. In the following two lemmas, we show that for an appropriate value of r , the number of nodes in Ŝr,m and
r,m normalized by m2 converges to 0 almost surely.
Define sm =

m−r
2 , the width of the annulus Γm \ Γr . Let us first look at the nodes in T̂r,m. The following lemma states

that the fraction of nodes of T̂r,m in a narrow annulus within Γm approaches 0 as m → ∞.

emma 7.2. For a sequence sm → ∞ with sm
m → 0 as m → ∞, we have

lim
m→∞

|̂Tr,m|

m2 = 0 P-a.s.

roof. The nodes in T̂r,m form a subset of the nodes of the underlying Poisson point process Φ which are within Γm \Γr .
Thus, we have,

|̂Tr,m| ≤ Φ(Γm \ Γr ) P-a.s. (13)

It suffices now to show that Φ(Γm\Γr )
m2 → 0 as m → ∞, which then proves the lemma. We proceed as follows:

Φ(Γm \ Γr )
m2 =

Φ(Γm \ Γr )
m2 − r2

·
m2

− r2

m2

=
Φ(Γm \ Γr )
m2 − r2

·

(
4sm
m

−
4s2m
m2

)
. (14)

sing the ergodic result in (5) with Γm replaced by Γm \ Γr , we obtain
Φ(Γm \ Γr )
m2 − r2

→ λ P-a.s.

his is because the area of Γm \ Γr is m2
− r2. Moreover, since the term within parenthesis in (14) converges to 0, from

he condition in the statement of the lemma, we have that

lim
m→∞

|̂Tr,m|

m2 ≤ lim
m→∞

Φ(Γm \ Γr )
m2

= 0 P-a.s. □
10
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We next address the nodes in Ŝr,m. These are nodes within Γr but without a Γm-conduit. We will show that |̂Sr,m|

converges to 0 almost surely using ideas from Russo–Seymour–Welsh (RSW) theory which is discussed in Appendix B.
For this, let Annsm denote the event of existence of a circuit in the annulus Γm−1 \ Γr as shown in Fig. 3. Notice that if
|̂Sr,m| > 0, then there cannot be such a circuit. This is stated formally in the following lemma.

Lemma 7.3. For λ > λc , let B̂r,m be the event that there exists at least one point of Ĉ0,m within Γr without a Γm-conduit
i.e., B̂r,m = {|̂Sr,m| > 0}. Then B̂r,m ⊆ Annc

sm .

Proof. The proof proceeds by showing that the events B̂r,m and Annsm cannot occur simultaneously. For this, suppose
there is a circuit Λ within Γm−1 \ Γr . Also, suppose that some point z ∈ Φ that lies within Γr is connected to the origin
only via a path Π that leaves Γm. Then, Π must physically cross Λ at least twice as shown in Fig. 3. At any of the locations
where such a crossing happens, consider the two adjacent points, x and y, of Φ that are on the path Π , but which fall on
opposite sides of Λ. Note that, since Λ is at a distance of at least 1 from the boundary of Γm, both x and y are within Γm.
Also consider the two adjacent points, u and v, of Φ that are on Λ, but which fall on opposite sides of Π . Now, x, u, y, v
form a quadrilateral with diagonals xy and uv having length at most 1. Hence, at least one of the sides of this quadrilateral
has length at most 1. This means that at least one of x and y is within distance 1 of either u or v (or both). Thus, at any
crossing of Π and Λ, either Π and Λ intersect at some point of Φ , or Π is connected by an edge to the circuit Λ, and
the connecting edge lies entirely within Γm. From this, one can construct a Γm-conduit between z and the origin. □

Corollary 7.4. For λ > λc , there exists sm ≪ m such that

|̂Sr,m|
m→∞
−→ 0 P-a.s.

Proof. Let ϵ > 0. From the previous lemma and using Proposition B.3, we can write

P(|̂Sr,m| > ϵ) ≤ P(Annc
sm ) ≤ 8

⌈
m
sm

⌉
exp(−csm). (15)

aking sm =
3 logm

c and summing over m, we obtain∑
m

P(|̂Sr,m| > ϵ) ≤

∑
m

c ′

m2 log(m)
+

c ′′

m3 < ∞. (16)

sing the Borel–Cantelli lemma, this shows that |̂Sr,m| → 0 as m → ∞ almost surely. □

roof of Theorem 7.1. The choice of sm =
3 logm

c satisfies the condition of Lemma 7.2 as well. From Lemma 7.2 and
orollary 7.4, as m tends to infinity, we obtain

Ĉ0,m

m2 =
|̂Tr,m|

m2 +
|̂Sr,m|

m2 → 0 P-a.s.,

here r = m −
6 logm

c . This proves the theorem. □

Continuing the discussion prior to Theorem 7.1, the fraction of nodes in the component of the origin that are not
connected via Γm-conduits approaches 0 as m → ∞ almost surely. The outcome of Theorem 7.1 is that in the asymptotic
regime as m → ∞, as long as we are interested in the fraction of nodes within the component of the origin, it does not
atter whether these are connected to the origin via Γm-conduits or not. In other words, the fraction of nodes within

G can be approximated by the fraction of nodes within Γm of the component of the origin in G0 for a large m. To get a
andle on the fraction of nodes within Γm of C0(G0), we will need the following lemma.

Lemma 7.5. Let A = {0 ∈ C(G0)}, where C(G0) is the infinite cluster of G0. For λ > λc , we then have

lim
m→∞

|C0(G0) ∩ Γm|

λm2 = θ (λ)1A P-a.s.

Proof. We can write
|C0(G0) ∩ Γm|

λm2 =
|C0(G0) ∩ Γm|

λm2 1A +
|C0(G0) ∩ Γm|

λm2 1Ac .

ince Ac is the event that the origin is in some finite cluster, the number of nodes within C0(G0) is finite. In the limit as
→ ∞, the latter term on the RHS above goes to 0. For the first term, notice that A = {C0(G0) = C(G0)}. This gives

|C0(G0) ∩ Γm|
1A =

|C(G0) ∩ Γm|
1A.
λm2 λm2

11
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Further, from (A.1), we have that

lim
m→∞

|C(G0) ∩ Γm|

λm2 = lim
m→∞

|C(G) ∩ Γm|

λm2 P-a.s.

herefore, using (8) in the RHS of the above equation, we obtain that

lim
m→∞

|C0(G0) ∩ Γm|

λm2 1A = lim
m→∞

|C(G0) ∩ Γm|

λm2 1A

= θ (λ)1A P-a.s. □

Note: It should be noted here that the statements in Theorem 7.1, Lemmas 7.3 and 7.5 and Corollary 7.4 hold P0-a.s.,
since these are P-a.s. statements made on the underlying graph G0.

Before we proceed, we recall the definition of the minimum forwarding probability in (1):

pk,n,δ = inf
{
p
⏐⏐⏐ E

[
Rk,n(G0

m)
|C0(G0

m)|

]
≥ 1 − δ

}
,

where the expectation is over the graph as well as the probabilistic forwarding mechanism. Note that in our setting, the
source, 0, always has mark 1 since it transmits all the n packets. To be more explicit, define 1 = (1, 1, . . . , 1) to be the
vector of all 1s of length n. We denote by E(0,1) the expectation with respect to the Palm probability P0 given a point at
the origin, conditional on it having mark Z(0) = 1. In terms of this, the above equation translates to

pk,n,δ = inf
{
p
⏐⏐⏐ E(0,1)

[
Rk,n(Gm)
|C0(Gm)|

]
≥ 1 − δ

}
. (17)

Next, since we are addressing a broadcast problem, it is necessary that a large fraction of nodes receive a packet. This,
n turn necessitates that the fraction of nodes that transmit the packet is also large. With reference to the RGG on the
hole plane, this means that the nodes in G+ need to have an infinite cluster. To allow for this, we make the following
ssumption.

ssumption 1. The forwarding probability p is such that λp > λc .

Notice that the pk,n,δ values obtained from simulations in Fig. 1 conform to this assumption. The assumption is discussed
n slightly more detail in Section 9.1. We now obtain expressions for the minimum forwarding probability and the
xpected total number of transmissions based on these two assumptions.

.1. Transmissions

Consider first the transmission of a single packet. Let T (Gm) be the number of nodes of Gm that receive the packet from
he source and transmit it and let T (G) ∩ Γm be the set of nodes within Γm that receive the packet from the source and
ransmit it when probabilistic forwarding is carried out on G.2 From our construction, it follows that T (Gm) is stochastically
ominated by |T (G) ∩ Γm| since there might be nodes which receive a packet from outside Γm and transmit it. However,
t can be shown that,

lim
m→∞

E(0,1) [T (Gm)]
m2 = lim

m→∞

E(0,1) [|T (G) ∩ Γm|]
m2 .

This is because the expected fraction of transmitting nodes with no Γm-conduits diminishes as m → ∞. Thus, it suffices
o evaluate limm→∞

E(0,1)[|T (G)∩Γm|]
m2 to find the expected number of transmissions for a single packet.

In the jargon of marked point processes, T (G) is the set of vertices with mark Z(·) = 1 that are in the cluster containing
the origin. Note that the origin has mark 1, since it always transmits the packet. As the vertices with mark 1 form a thinned
point process, Φ+ of intensity λp, T (G) is the set of nodes in the cluster containing the origin in G+. In Section 6.1, we
denoted this set by C+

0 . From Assumption 1, the graph on Φ+ is in the super-critical regime and thus possesses a unique
infinite cluster, C+. The following theorem provides the expected size of C+

0 ∩Γm. The proof proceeds by relating it to the
expected size of C+

∩ Γm and using the ergodic result in (10).

Theorem 7.6. For λp > λc , we have

lim
m→∞

E(0,1)
[

|C+

0 ∩ Γm|

λm2

]
= p θ (λp)2.

2 It is implicit from the use of Palm probabilities that the origin is the source and probabilistic forwarding is formulated as an MPP as described
in Section 6.1.
12
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Proof. Denote by C+, the unique infinite cluster of the thinned process Φ+. Define the event A+
= {0 ∈ C+

} =

{B1(0) ∩ C+
̸= ∅} ∩ {Z(0) = 1}. Using Lemma 7.5 for the thinned process Φ+ of intensity λp, we obtain

|C+

0 ∩ Γm|

λpm2
m→∞
−→ θ (λp)1{A+

} P-a.s.

rom the note following Lemma 7.5 and using DCT, the expected values with respect to P0 also converge giving,

lim
m→∞

E0
[

|C+

0 ∩ Γm|

λm2

]
= θ (λp)P0(A+) = p θ (λp)2,

where the last equality uses the definition of A+, P0(A+) = P0(B1(0) ∩ C+
̸= ∅) P0(Z(0) = 1) = pθ (λp), and we have also

used that {B1(0) ∩ C+
̸= ∅} and {Z(0) = 1} are independent events with respect to P0. The proof is complete by noting

that if Z(0) = 0, then C+

0 = ∅ and so

E0
[

|C+

0 ∩ Γm|

λm2

]
= pE(0,1)

[
|C+

0 ∩ Γm|

λm2

]
. □

Therefore, for large values of m, the expected number of transmissions, E0,1 [T (Gm)], can be approximated by

E(0,1) [
|C+

0 ∩ Γm|
]

≈ m2λp θ (λp)2.

Consider now the transmission of multiple packets. The n coded packets are transmitted independently of each other.
The expected total number of transmissions of all n packets would just be n times the expected transmissions of a single
packet. Therefore, from Theorem 7.6, we then obtain

τk,n,δ ≈ nm2λpk,n,δ
(
θ (λpk,n,δ)

)2
. (18)

7.2. Minimum forwarding probability

In this section, we will obtain an expression for the minimum forwarding probability. Recall that this entails estimating
E(0,1)

[
Rk,n(Gm)
|C0(Gm)|

]
, where C0(Gm) is the set of nodes in the component of the origin in the underlying RGG on Γm and Rk,n(Gm)

re the number of nodes that receive at least k out of the n packets from the origin, which is the source. From Theorem 7.1,
0(Gm) can be viewed as the set of nodes in the component of the origin in G0 restricted to Γm but with only those nodes

which are connected to the origin via Γm-conduits. Rk,n(Gm) is the number of nodes among those in C0(Gm), which are
uccessful receivers. These arguments lets us think of the expectation E(0,1)

[
Rk,n(Gm)
|C0(Gm)|

]
, with respect to the RGG, G0, instead

f the finite RGG, G0
m.

Since we are interested in large networks, it is natural to assume that the origin is part of the infinite cluster of G0.
his means that the cluster of the origin in G0

m connects to the infinite cluster in G0 when G0
m is embedded within it. In

ther words, the event A = {0 ∈ C(G0)} occurs. The results of this section are made with this assumption, which is stated
below explicitly. Additional justification for this is provided in Section 9.1.

Assumption 2. The origin is part of the infinite cluster of G0.

From the discussion above and the assumption, our interest now is to estimate E(0,1)
A

[
Rk,n(Gm)
|C0(Gm)|

]
. The subscript A in the

xpectation E(0,1)
A indicates conditional expectation given that the event A occurs. From Assumption 1, it is clear that such

a conditioning can indeed be done, since P(A) = θ (λ) > 0.
The following theorem gives the expected value of the fraction of successful receivers in the limit as m → ∞

given the event A. Before we state the theorem, recall the formulation of probabilistic forwarding as a marked point
process in Section 6. Cext

k,n was defined as the set of nodes which are present in at least k out of the n IECs and let
θ ext
k,n ≡ θ ext

k,n (λ, p) = P0(0 ∈ Cext
k,n ). Additionally, define Aext

[t] to be the event that the origin is present only in the IECs
corresponding to the packets 1, 2, . . . , t .

Theorem 7.7. For λp > λc , we have

lim
m→∞

E(0,1)
A

[
Rk,n(Gm)
|C0(Gm)|

]
=

1
θ (λ)2

n∑
t=k

(
n
t

)
θ ext
k,t P(0,1)(Aext

[t] ).

The proof is on similar lines as that on the grid in [7]. It relies on carefully relating the fraction of successful receivers
n G to the fraction of nodes present in at least k out of the n IECs corresponding to probabilistic forwarding on G0. A
tep-by-step proof is given in Appendix C.
The following proposition is used to express P(0,1)(Aext) in terms of θ ext.
[t] k,n

13
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Fig. 4. Comparison of the expected number of transmissions per node on Γ101 obtained using (18) with that obtained through simulations. Note
hat the pk,n,δ value for each point on both the curves in each plot are from the simulations in Fig. 1(a).

roposition 7.8.

P(0,1) (Aext
[t]

)
=

⎧⎨⎩
θ ext
t,n − θ ext

t+1,n(n
t

) 0 ≤ t ≤ n − 1

θ ext
n,n t = n.

(19)

roof. The second part follows directly from the definitions of θ ext
n,n and the event Aext

[n] . For the first part, define for T ⊆ [n],
Aext
T to be the event that the origin is present in exactly the IECs indexed by T . Note that

θ ext
k,n = P(0,1)(0 ∈ Cext

k,n ) =

n∑
j=k

∑
T⊆[n]
|T |=j

P(0,1)(Aext
T ).

Since the event Aext
T depends only on the cardinality j (see Step 7 in Appendix C), we obtain

θ ext
k,n =

n∑
j=k

(
n
j

)
P(0,1)(Aext

[j] ).

We then have that θ ext
t,n − θ ext

t+1,n =
(n
t

)
P(0,1)(Aext

[t] ) for 0 ≤ t ≤ n − 1, which is the statement of the proposition. □

We remark here that the statement of Theorem 7.7 can be used to obtain an estimate for the expected fraction of
successful receivers without the conditioning on the event A. We write

E(0,1)
[
Rk,n(Gm)
|C0(Gm)|

]
= θ (λ) E(0,1)

A

[
Rk,n(Gm)
|C0(Gm)|

]
+ (1 − θ (λ)) E(0,1)

AC

[
Rk,n(Gm)
|C0(Gm)|

]
otice from Fig. 2 that θ (λ) shows a phase transition phenomenon. For the intensities we are interested in, P(Ac) = 1−θ (λ)

is very small and the latter term in the above equation can be neglected. This also suggests that Assumption 2 is not a
very strong requirement.

Consequently, for large m, using Theorem 7.7 and Proposition 7.8 in (17) yields an approximation for the minimum
forwarding probability given by,

pk,n,δ ≈ inf

{
p
⏐⏐⏐⏐ n−1∑

t=k

θ ext
k,t (θ

ext
t,n − θ ext

t+1,n)
θ (λ)

+
θ ext
k,n θ ext

n,n

θ (λ)
≥ 1 − δ

}
. (20)

.3. Comparison with simulations

We have not been able to obtain exact expressions for the probability θ ext
k,t (λ, p) in terms of the percolation probability

(λ). However, in Section 9.4, we provide some bounds for it. We also develop an alternate heuristic approach, which
rovides comparable results for the minimum forwarding probability obtained through simulations, in Section 8.
Nevertheless, the approximation for the expected total number of transmissions, τk,n,δ in (18) can be evaluated with

he knowledge of the minimum forwarding probability. In Fig. 4, we show the plot of τk,n,δ normalized by λm2 with n in
hich we use pk,n,δ values from Fig. 1(a)
It is observed that for n ≲ 26, both the curves match pretty well. However, for n > 26 they diverge. This can be

ttributed to the fact that as n increases, pk,n,δ decreases as in Fig. 1(a) and thus λpk,n,δ ↘ λc . The estimate for the
ercolation probability, θ (λ), obtained via the ergodic result in (9) may not be accurate near the critical intensity, λc
which is itself not exactly known). In particular, Γ251 may not be large enough for the ergodic result in (9) to kick in, as
e approach λ .
c

14
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Nevertheless, this provides justification to our observation that the expected number of transmissions indeed decreases
hen we introduce coded packets along with probabilistic forwarding. This comes with a catch that the minimum

orwarding probability for a near-broadcast behaves as in Fig. 1(a). In order to establish this, we provide a heuristic
xplanation in the next section.

. Heuristic estimates for the minimum forwarding probability and the optimal number of coded packets

The minimum forwarding probability is expressed in terms of the probability θk,n in (20). This section provides heuristic
estimates for the probability θk,n, which, in turn, is used to obtain approximations for pk,n,δ . Additionally, a graphical
procedure to obtain the optimal number of coded packets using these heuristic estimates is also outlined. For rigorous
bounds on θk,n, we refer the reader to Section 9.4.

In the marked point process formulation, probabilistic forwarding of multiple packets was modelled using marks given
by Z = (Z1, Z2, . . . , Zn) with Zi ∼ Ber(p) conditional on the underlying point process Φ . We refer to this as the original
model. Motivated by the alternate interpretation for the nodes in the IEC expounded at the end of Section 6.2, in this
section we provide a heuristic approach for evaluating the minimum forwarding probability.

As before, let θ ext(λ, p) denote the probability that the origin is in the IEC for a single packet transmission. Associate a
new mark Z′

= (Z ′

1, Z
′

2, . . . , Z
′
n) ∈ K = {0, 1}n to each vertex of Φ . The ith co-ordinate of Z′ corresponds to probabilistic

forwarding of the ith packet. The mark Z′ is chosen such that each of the i co-ordinates is either 1 with probability
ext(λ, p) (= θ (λp)) or 0 with the remaining probability, independent of the others. Similar to the viewpoint for the single
acket transmission, our idea is to use Z ′

i as a proxy for a vertex to be present in the IEC in probabilistic forwarding of
he i−th packet. We refer to this as the mean-field model.

There are two key differences between the two models defined here. Firstly, in the original model, presence of a node
n the IEC is not independent of other nodes being present in the IEC. Whereas, in the mean-field model, Z ′

i (u) and Z ′

i (v)
re chosen to be independent Ber(θ (λp)) random variables for two distinct vertices u and v. Since Z ′

i is interpreted as
n indicator whether a vertex is present in the ith IEC, this independence is enforced, conditional on Φ . Secondly, in the
riginal model, presence of a particular node in IECs corresponding to two different packets, are not independent. They
re independent conditional on Φ but not otherwise. In the mean-field model, since Z′

i(v) and Z′

j(v) are taken to be iid,
his dependence is over-looked.

To analyse the mean-field model, let us use the ergodic theorem (2) with

f (z′, ω) =

n∑
j=k

∑
T⊆[n]
|T |=j

∏
i∈T

z ′

i

∏
i/∈T

(1 − z ′

i ).

he inner summation is 1 only if a node has mark 1 in exactly the co-ordinates indexed by T (which has cardinality j).
ince the outer sum goes over all j ≥ k, the value of the function is 1 for a vertex which has mark 1, in at least k out of
he n co-ordinates. From our interpretation of Z′, the value of the function, f , for a vertex is equal to 1 if it is present in
t least k out of the n IECs of the original model. Define C ′

k,n to be the set of nodes which have mark Z ′

i (·) = 1 in at least
out of the n packet transmissions in the mean-field model. Here, C ′

k,n acts as a proxy for Cext
k,n . Since f (Z′(v), ω) = 1 if

∈ C ′

k,n, we can apply Theorem (2), to obtain for P almost surely

1
ν(Γm)

∑
Xi∈Γm

1{Xi ∈ C ′

k,n}

m→∞
−→ λ

∑
z′∈{0,1}n

P(Z′
= z′)E(0,z′)

⎡⎢⎣ n∑
j=k

∑
T⊆[n]
|T |=j

∏
i∈T

Z′

i

∏
i/∈T

(1 − Z′

i)

⎤⎥⎦
= λ

n∑
j=k

∑
T⊆[n]
|T |=j

∑
z∈{0,1}n

P(Z′
= z′) ×

∏
i∈T

z′

i

∏
i/∈T

(1 − z′

i).

For a fixed j and a set T with |T | = j, there is exactly one z′ such that
∏

i∈T z
′

i
∏

i/∈T (1− z′

i) = 1 and the probability of such
a z′ is given by P(Z′

= z′) = θ ext(λ, p)j × (1 − θ ext(λ, p))n−j. Thus, the expression above reduces to

|C ′

k,n ∩ Γm|

ν(Γm)
m→∞
−→ λ

n∑
j=k

∑
T⊆[n]
|T |=j

θ ext(λ, p)j(1 − θ ext(λ, p))n−j

= λ

n∑
j=k

(
n
j

)
θ ext(λ, p)j(1 − θ ext(λ, p))n−j P-a.s.
15
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Fig. 5. Comparison of simulation results with results obtained via (21) and (18) on RGG(4.5, 1) (top) and RGG(4, 1) (bottom) on Γ101 with k = 20
ackets and δ = 0.1.

efine

θ ′

k,n ≡ θ ′

k,n(λ, p) =

n∑
j=k

(
n
j

)
θ (λp)j(1 − θ (λp))n−j.

From our interpretation of C ′

k,n as representing Cext
k,n of the original model, we use θ ′

k,n instead of θ ext
k,n in (20), and after

a series of manipulations, the minimum forwarding probability obtained via this heuristic approach, p′

k,n,δ , would be the
minimum probability p such that

1
θ (λ)

n∑
t=k

t∑
j=k

(
n
t

)(
t
j

)
θ (λp)t+j(1 − θ (λp))n−j

≥ 1 − δ.

This expression is similar to the expression that was obtained for the case of a grid in [7]. Using [7, Prop. VI.11], we
then have

p′

k,n,δ = inf
{

p
⏐⏐⏐ P(Y ≥ k)

θ (λ)
≥ 1 − δ

}
(21)

here Y ∼ Bin(n, (θ (λp))2).
The p′

k,n,δ values obtained using this expression is compared alongside the simulation results in Figs. 5(a) (λ = 4.5) and
5(c) (λ = 4). The expected total number of transmissions obtained via (18) is plotted in Figs. 5(b) and 5(d) respectively.
The simulation setup is the same as described in Section 4.

It is observed that the curve for the minimum forwarding probability obtained via our analysis tracks the simulation
curve pretty well. However, the curve for the expected total number of transmissions deviates from the simulation results
substantially for larger values of n. This can be attributed to the drastic change in θ (λ) around the critical intensity λc . Even
hough there seems to be a minor difference in the forwarding probability of the original and the mean-field model, the
ehaviour of the percolation probability around λc creates a huge divide between the two transmission plots in Fig. 5(b).
his behaviour is similar to what was obtained on the grid in [7]. Nevertheless, note that the τk,n,δ curve initially decreases
o a minimum and then gradually increases with n (albeit very slowly). This shows that probabilistic forwarding with
oding is indeed beneficial on RGGs in terms of the number of transmissions required for a near-broadcast.
From a practical viewpoint, this heuristic can be used to obtain the optimal values of the minimum forwarding

robability and the number of coded packets required for a near-broadcast. The expression for p′

k,n,δ in (21) provides an
asy and relatively accurate way (as seen in Figs. 5(a) and 5(c)) to graph the curve for the optimal forwarding probability
or given values of k and δ. This could then be used to choose the value of n for encoding the k data packets so as to have
near-broadcast with the least number of transmissions. A heuristic way to go about this would be to use the smallest
corresponding to the point on the p′ curve where the (discrete) gradient between successive points does not vary
k,n,δ

16
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f
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Fig. 6. Comparison of simulation results with heuristics shown in Fig. 5 but with additional correction for the probabilities. The probabilities in
Figs. 5(a) and 5(c) were scaled by 1.0189 and 1.032 to obtain the curves corresponding to the heuristics in (a) and (c). Eq. (18) was then used to
generate the green curves in (b) and (d). (For interpretation of the references to colour in this figure caption, the reader is referred to the webversion
of this article.)

significantly.3 In Fig. 5(a), this corresponds to the point n ≈ 26. This point is expected to give the best result for the
ollowing two reasons:

• When operating with a lesser value of n (< 26), it is possible to introduce more coded packets so that the effect of
the decrease in p′

k,n,δ from Fig. 5(a) overshadows the increase in the number of transmissions brought about by the
introduction of the extra packets.

• With additional coded packets (n > 26), the number of transmissions increases owing to the forwarding probability
not decreasing significantly.

In this way, a judicious choice can be made for n and the forwarding probability pk,n,δ at which to operate the scheme.
We now provide an alternate methodology to deduce the optimal number of coded packets motivated from our

numerical results. It is evident from Fig. 4 that the deviation of the two curves in Figs. 5(b) and 5(d) in predominantly
due to the minor difference between the corresponding minimum probability curves in Figs. 5(a) and 5(c). With this
insight, we scale the curves obtained via the heuristics in Fig. 5(a) and 5(c) by a factor equal to the ratio of the minimum
forwarding probabilities from the simulations and heuristics averaged over all n from 20 to 40. The plots accounting
for this correction are provided in Fig. 6 . It can be seen that the corrected curves track the simulations well, and can
additionally recover the optimal number of coded packets.

9. Discussion

9.1. A note on our assumptions

In this subsection, we provide some justifications for the assumptions made in our analysis. Our interest in this paper is
to broadcast information on large networks. A basic requirement for this is that a large number of nodes in the network
must be reachable from the origin. In the sub-critical regime, i.e. λ < λc ≈ 1.44, the clusters are finite and small. To
model large ad-hoc networks, we need the graph to be connected on a large area Γm. This necessitates λ to be in the
super-critical regime and the component of the origin within Γm to be large. In the limit as m → ∞, this requires that
the origin be present in the infinite cluster of the underlying RGG, thus justifying Assumption 2.

Further, notice that for a near-broadcast, we need the expected fraction of successful receivers to be close to 1,
i.e., E0

[
|Rk,n(G0)∩Γm|

λθ (λ)m2

]
≥ 1 − δ for some small δ > 0 (The denominator here is the expected number of nodes within

Γm of the infinite cluster C .). If we would like this to hold for sufficiently large m, then the forwarding probability must
be such that Rk,n(G0) has infinite cardinality. This implies that p must be such that there is an IEC during probabilistic
orwarding on G0. Now, since existence of an IEC implies existence of an infinite cluster, the p value must ensure presence
of an infinite cluster. Thus λp > λc . This justifies Assumption 1.

3 This is referred to as the ‘‘elbow method’’ in the clustering literature.
17
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It can also be seen from the simulation results in Fig. 1 that τk,n,δ is minimized when the forwarding probability is
such that λpk,n,δ > λc or pk,n,δ > 0.32. Further, results obtained from our heuristic approach in Fig. 5 also suggest that
the expected total number of transmissions is indeed minimized when operating in the super-critical regime.

9.2. Communication aspects

In this subsection, we consider some of the issues involved in the practical implementation of the proposed proba-
bilistic forwarding algorithm with coded packets. With numerous packets traversing the network, packet collisions are
bound to happen. These interference effects need to be handled. Moreover, the channel between adjacent nodes could be
error prone resulting in a transmission being lost. Such channel outages need to be addressed as well.

When there are multiple packets in the network, interference effects can be avoided by separating the transmissions
either in the frequency domain or in the time domain.

• In the frequency domain, a possible solution is for nodes to transmit on orthogonal sub-carriers of an Orthogonal Fre-
quency Division Multiplexing (OFDM) signal. Alternately, each packet could be transmitted on a different orthogonal
sub-carrier. The latter scheme, however, limits the number of packets that can be transmitted concurrently.

• In the time domain, a scheduling algorithm has to be implemented to avoid concurrent transmissions which might
interfere. A schedule must not have a pair of nodes that are within two hops from each other in the same slot.

From a graph-theoretic perspective, both these solutions can be viewed as vertex-colouring problems on the underlying
graph G = (V , E). The problem of broadcast scheduling captures this from a graph-colouring setting and has a vast literature
(see e.g., [51,52]). Once a vertex-colouring is obtained, it can be used to implement the above strategies by associating
a colour with a particular sub-carrier frequency band or a particular time slot as required. These assignments could be
done during the time of network deployment with an associated one-time cost.

When links between adjacent nodes are not ideal noiseless links, the broadcast information received could be distorted.
Knowledge of the channel state information (CSI) could be used to further regulate the forwarding probability at every
node to overcome channel outages. Each link could be modelled to be either in a ‘good’ or a ‘bad’ state based on CSI
statistics. The problem then reduces to carrying out the probabilistic forwarding mechanism on a random subgraph of
the original network. This involves modelling the process as a joint site-bond percolation on the underlying graph. The
techniques necessary to analyse this scenario are more sophisticated than those used in this work, and form a possible
future research direction.

9.3. Optimization framework

Our treatment of the problem has shown that on RGGs in the connectivity regime, there exists an optimal value of the
number of coded packets n∗ and a corresponding forwarding probability p∗ that minimizes the expected total number of
transmissions while ensuring that the fraction of successful receivers is close to 1. However, our analysis does not provide
a way to obtain these optimal values. In the following, we formally state the relevant optimization problem and comment
on the same.

As before, let G be the component of the origin in an RGG generated on Γm of intensity λ. Denote by N the total
number of nodes in G and let Ti be the number of transmissions of packet i, for i ∈ [n]. Recall that Rk,n was the number
of successful receivers within G. For fixed k and δ, our interest is to find

(n∗, p∗) = argmin
(n,p)

E

[
n∑

i=1

Ti

]

subject to E
[

Rk,n

N

]
≥ 1 − δ,

n ∈ N, p ∈ [0, 1].

(22)

In this work, we have analysed the above problem when the size of the area on which the RGG is deployed, Γm, goes
to infinity. We obtain analytical expressions for E[Ti] and E

[
Rk,n
N

]
in terms of the percolation probability of the RGG as

m → ∞. To be more precise, denote the successful receivers by Rk,n(G0
m). Using a coupling argument as in the proof of

emma 4.1(a), we have that E
[
Rk,n+1(G0m)

N

]
≥ E

[
Rk,n(G0m)

N

]
. Taking the limit as m → ∞, we obtain

lim
m→∞

E
[
Rk,n+1(G0

m)
]

≥ lim
m→∞

E
[
Rk,n(G0

m)
]

. (23)

N N
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Following similar arguments as in obtaining (20) from Theorem 7.7, the limit on the RHS above is given by∑n−1
t=k

θextk,t (θ
ext
t,n −θextt+1,n)
θ (λ) +

θextk,n θextn,n
θ (λ) and the limit on the LHS is the same expression with n replaced by n + 1. If we now

efine for fixed n, k and δ,

Pn ≜

{
p
⏐⏐⏐⏐ n−1∑

t=k

θ ext
k,t (θ

ext
t,n − θ ext

t+1,n)
θ (λ)

+
θ ext
k,n θ ext

n,n

θ (λ)
≥ 1 − δ

}
and p(n) ≜ infPn, (24)

23) shows that {Pn, n ≥ 0} is a non-decreasing sequence of sets and therefore p(n) decreases monotonically as n → ∞.
sing this along with the observation that the expression for the expected total number of transmissions in (18) is an
ncreasing function of the forwarding probability, we obtain that,

n∗
= argmin

n≥k
nλp(n) (θ (λp(n)))2 and p∗

= p(n∗) as m → ∞, (25)

n the following, we discuss two variations of the above problem:

• Fixed forwarding probability p = p0 : If p0 > pk,k,δ , then introducing coded packets does not provide any benefit
in terms of the expected total number of transmissions. However if p0 < pk,k,δ , since {Pn, n ≥ k} forms an increasing
sequence of sets, there exists a minimum value of n = n0 after which p0 ∈ Pn for all n ≥ n0. This n0 is therefore the
optimal number of coded packets for the fixed probability p0.

• Fixed number of coded packets n = n0 ≥ k: Here again, owing to the sequence p(n) decreasing to 0 from
Lemma 4.1, there exists a unique probability p0 = p(n0) given by (20).

n both these scenarios, obtaining a closed form expression for the unknown n0 or p0 would require an analytical
haracterization of the probabilities θ ext

k,n and θ (λ) appearing in (24). This remains true even if the optimal values are
rovided, i.e., even if either p0 = p∗ or n0 = n∗ is given. Some bounds on θ ext

k,n are provided in the next subsection and
btaining expressions for θ (λ) is an open problem (even on deterministic graphs such as grids). Nevertheless, the heuristic
pproach presented in Section 8 can be used to obtain the optimal quantities in both the above scenarios, or to solve the
ptimization problem in (22) directly. A further discussion on this appears in Section 10.

.4. Bounds on θ ext
k,n

We give two lower bounds for θ ext
k,n (λ, p). The probability θ ext

k,n (λ, p) can be expressed in terms of the events Aext
T as

ollows.

θ ext
k,n (λ, p) = P0

(⋃
|T |≥k

Aext
T

)
=

∑
|T |≥k

P0(Aext
T )

simple lower bound for θ ext
k,n (λ, p) can be obtained by taking the term corresponding to T = [n] in the above summation.

θ ext
k,n (λ, p) ≥ P0(Aext

[n] ) = P0

(
n⋂

i=1

{0 ∈ Cext
i }

)
(a)
≥

n∏
i=1

P0 (0 ∈ Cext
i

)
= P0 (0 ∈ Cext

i

)n
ere, the inequality in (a) is via the FKG inequality since the events {0 ∈ Cext

i } are increasing events. This gives

θ ext
k,n (λ, p) ≥ θ (λp)n. (26)

ote that this, along with Assumption 1, suffices to ensure that our analysis yields non-trivial results for all values of k
nd n.
We now provide a second bound. For this, recall the iid marked point process Φ equipped with the mark structure

. Define a new marked point process ΦT with the underlying point process Φ and marks ZT =
∏

i∈T Zi
∏

j/∈T (1 − Zj).
he points with mark 1 in ΦT , form a thinned version of Φ where each vertex is retained with probability P(ZT =

|Φ) = P(Zi = 1{i ∈ T } , i ∈ [n]|Φ) = p|T |(1 − p)n−|T |. Thus ΦT is an iid marked point process with Ber(p|T |(1 − p)n−|T |)
arks.
Let Cext(ΦT ) denote the IEC of ΦT . Notice that⋃

{0 ∈ Cext(ΦT )} ⊆ {0 ∈ Cext
k,n }.
|T |≥k
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The probability of the event in the LHS above can be found as

P0

⎛⎝⋃
|T |≥k

{0 ∈ Cext(ΦT )}

⎞⎠ = 1 − P0

⎛⎝⋂
|T |≥k

{0 /∈ Cext(ΦT )}

⎞⎠
= 1 −

n∏
j=k

(
1 − θ ext(λ, pj(1 − p)n−j)

)(nj)
Therefore, the probability θ ext

k,n (λ, p) can be bounded as

θ ext
k,n (λ, p) ≥ 1 −

n∏
j=k

(
1 − θ (λpj(1 − p)n−j)

)(nj) (27)

10. Future work

In this section, we collect some of the questions arising in this work that could lead to possible future research
directions. These encompass problems arising from our analysis, numerical experiments, algorithm variants and practical
implementation.

1. Probabilistic forwarding of n packets on the RGG gave rise to the term θ ext
k,n = P0(0 ∈ Cext

k,n ) in the expression for the
expected fraction of successful receivers. While some bounds were obtained for this in Section 9.4, an analytical
expression for θ ext

k,n in terms of θ ext(λ, p) (which was the probability that the origin belongs to the IEC for site
percolation on the RGG), would be useful in obtaining better estimates of pk,n,δ and τk,n,δ . Perhaps, a simpler problem
is to find the probability P0(0 ∈ C+

k,n). In terms of the marked point process formulation, for a point process Φ0 with
independent marks Z = (Z1, Z2, . . . , Zn) where Zi ∼ Ber(p), this is the probability that the origin is present in at
least k out of the n infinite clusters. Each Zi corresponds to a site percolation process on the underlying realization
of the RGG. Conditional on the underlying RGG (or equivalently, Φ), the events corresponding to the presence of
the origin in the infinite cluster of the ith and the jth percolation processes are independent. However, this is not
true unconditionally. Intuitively, it is expected that the presence of the origin in the ith infinite cluster makes it
more likely for it to be present in the jth infinite cluster as well. A mathematically rigorous understanding of this
phenomenon is necessary.

2. Concerning the optimization framework developed in Section 9.3, it was indicated that the heuristics presented
in Section 8 can be employed to obtain the optimal values of the number of coded packets and the forwarding
probability. This assumed that the estimates for the probabilities θ ext

k,n and θ (λ) obtained numerically using the
ergodic theorems (9) and (12) well-approximated the actual values in the limit as m → ∞. Naturally, a second-
moment characterization of the fraction of successful receivers and the expected total number of transmissions
in the asymptotic regime will provide better indication of the validity of these estimates. Alternately, one could
consider solving the optimization problem stated in (22) for a fixed m using other methodologies. We believe the
techniques required for these approaches are more sophisticated and span an interesting future direction for this
line of work.

3. The assumption that the random geometric graph operates in the super-critical region is inherent in our analysis.
In fact, as discussed in Section 9.1, most of our results require λp > λc . However, as shown in Lemma 4.1(b), the
forwarding probability diminishes to 0 as n → ∞. Thus, for large n, the thinned RGG of intensity λp consisting
of only the transmitters operates in the sub-critical regime (λp < λc). A comprehensive study of the probabilistic
forwarding mechanism in the sub-critical regime will help provide an overall understanding of the problem. In
particular, this might provide further insight into the deviation of our heuristics from the observed simulations in
Figs. 5(b) and 5(d).

4. The probabilistic forwarding mechanism with coded packets is a completely decentralized and distributed al-
gorithm. This makes it amenable to be deployed on mobile ad-hoc networks (MANETs) or vehicular networks
(VANETs) where the individual nodes are moving. Moreover, simulation studies indicate that mobility improves
connectivity in such networks (see e.g., [53–56]). Additionally, other metrics of performance can be incorporated
in this scenario such as delay [57–59], age of information (AoI) [60,61], percolation and connection times [62] etc.
Thus, an interesting future direction is to investigate the performance of the probabilistic forwarding mechanism
with coded packets on MANETs considering these metrics as well.

5. As an extension of the techniques presented here, one could consider each communication link between nodes to
be noisy. Then, even though a node might forward a packet with probability p, it will be received only by a subset
of its neighbours depending on the packet drop probability, q, induced by the noisy channel. This can be modelled
as simultaneous bond and site percolation on the underlying graph, a process that does not seem to have received
much attention on random graphs.
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ppendix A. Palm expectations of infinite cluster densities

In this section, we prove three main propositions which are used in the analysis of the probabilistic forwarding protocol.
et G ∼ RGG(λ, 1) be a random geometric graph on R2 defined on some probability space (Ω,F,P). The underlying
Poisson point process, Φ , is of intensity λ. The intensity λ is such that we operate in the super-critical region, i.e., λ > λc .
et C ≡ C(Φ) be the unique infinite cluster in G. Let Φ0

= Φ ∪ {0} denote the Palm version of Φ and let C(Φ0) be the
nfinite cluster in it. Denote by P0, the Palm probability of the origin and E0, the expectation with respect to P0. We now
how that the limiting fraction of vertices in C within Γm remains the same with respect to both E and E0.

roposition A.1.

lim
m→∞

E0
[

|C ∩ Γm|

m2

]
= lim

m→∞
E
[

|C ∩ Γm|

m2

]

Proof. Let C1, C2, . . . , CK be finite components in G which intersect the ball of radius 1 centred at the origin, i.e., Ci ∩

B1(0) ̸= ∅, ∀i ∈ {1, 2, . . . , K }. Since vertices from distinct finite components Ci and Cj, should be at least at a distance
of 1 from each other, the number of such components is bounded. In particular, K is a random variable with K ≤ 7 a.s.
The infinite clusters in the RGG(Φ0, 1) and RGG(Φ, 1) models can be related in the following way:

C(Φ0) =

{
C(Φ) ∪ C1 ∪ · · · ∪ CK ∪ {0} if C ∩ B1(0) ̸= ∅

C(Φ) if C ∩ B1(0) = ∅

Using this, we can write

|C(Φ0) ∩ Γm|

m2 =
|C(Φ) ∩ Γm|

m2 +

K∑
i=1

|Ci ∩ Γm|

m2 1{C ∩ B1(0) ̸= ∅}

ince K ≤ 7 a.s. and |Ci| < ∞ for all i = 1, 2, . . . , K , we have
K∑

i=1

|Ci ∩ Γm|

m2
m→∞
−→ 0 P-a.s..

Thus, we deduce that

lim
m→∞

|C(Φ0) ∩ Γm|

m2 = lim
m→∞

|C(Φ) ∩ Γm|

m2 P-a.s. (A.1)

ince the random variables involved are bounded by 1, applying the dominated convergence theorem (DCT) gives the
esired result. □
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Corollary A.2.

lim
m→∞

E0
[

|C ∩ Γm|

m2

]
= λθ (λ)

Proof. This directly follows from the previous proposition and (8). □

Next, consider the formulation of the marked point process described in Section 6. Let Cext
≡ Cext(Φ) be the infinite

xtended cluster (IEC). We now show an analogue of the previous proposition for Cext.

roposition A.3.

lim
m→∞

E0
[

|C ext
∩ Γm|

m2

]
= lim

m→∞
E
[

|C ext
∩ Γm|

m2

]

Proof. The proof is along the same lines as that in Proposition A.1. Let C1, C2, . . . , CK be finite components in G+ which
intersect the ball of radius 1 centred at the origin, i.e., Ci ∩ B1(0) ̸= ∅, ∀i ∈ {1, 2, . . . , K }. Here again K ≤ 7 a.s. Now,
suppose that C+

∩B1(0) ̸= ∅, then regardless of the mark of the origin, it is true that Cext(Φ0) ⊆ Cext(Φ)∪Cext
1 ∪· · ·∪ Cext

K
with equality being true when the origin has mark 1). If on the other hand C+

∩ B1(0) = ∅, then Cext(Φ0) = Cext(Φ).
sing this, we can write

|Cext(Φ0) ∩ Γm|

m2 ≤
|Cext(Φ) ∩ Γm|

m2 +

K∑
i=1

|Cext
i ∩ Γm|

m2 1{C+
∩ B1(0) ̸= ∅}.

ote that, if Ci is a finite cluster, then so is Cext
i and hence the summation on the RHS above tends to 0 as m → ∞. Since

e trivially have that

|Cext(Φ) ∩ Γm|

m2 ≤
|Cext(Φ0) ∩ Γm|

m2 ,

in the limit of large m, the fraction |Cext(Φ0)∩Γm|

m2 is sandwiched between the two limits yielding

lim
m→∞

|Cext(Φ0) ∩ Γm|

m2 = lim
m→∞

|Cext(Φ) ∩ Γm|

m2 P-a.s.

Using DCT gives the statement of the proposition. □

A similar argument extends to Cext
k,n as well, which is stated in the following proposition.

roposition A.4.

lim
m→∞

E0
[

|C ext
k,n ∩ Γm|

m2

]
= lim

m→∞
E
[

|C ext
k,n ∩ Γm|

m2

]

roof. Firstly, note that

|Cext
k,n (Φ

0) ∩ Γm|

m2 ≥
|Cext

k,n (Φ) ∩ Γm|

m2 . (A.2)

he nodes in Cext
k,n (Φ

0) can be related to those in Cext
k,n (Φ) in the following way. Let C+

1 , C+

2 , . . . , C+
n denote the infinite

lusters corresponding to each of the n packets and let Ci,1, Ci,2, . . . , Ci,Ki denote the finite clusters corresponding to the
i−th packet which intersect the ball of radius 1 at the origin. Here again, Ki ≤ 7 a.s. for all i. Proceeding with similar
easoning as that of Proposition A.3, we can obtain

|Cext
k,n (Φ

0) ∩ Γm|

m2 ≤
|Cext

k,n (Φ) ∩ Γm|

m2 +

∑
i∈[n]

C+

i ∩B1(0)̸=∅

Ki∑
j=1

|Cext
i,j ∩ Γm|

m2 (A.3)

The summation on the RHS is a finite sum with at most 7n terms with each term consisting of fraction of nodes in some

inite cluster. By taking limits as m → ∞, this fraction vanishes. Therefore the fraction
|Cext

k,n (Φ
0)∩Γm|

m2 is sandwiched between
he two limits in (A.2) and (A.3) yielding

lim
m→∞

|Cext
k,n (Φ

0) ∩ Γm|

m2 = lim
m→∞

|Cext
k,n (Φ) ∩ Γm|

m2 P-a.s.

Using DCT gives the statement of the proposition. □
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Fig. B.7. Left–right crossing in the sm × m rectangular box B through the events LRj and TBi .

ppendix B. Estimates on some crossing probabilities

Let Φ be a homogeneous Poisson point process of intensity λ > λc on the whole R2 plane. On a box Ba,b = [0, b]×[0, a],
left–right crossing of Ba,b is defined as a sequence of vertices {Xi, i = 1, 2, . . . , s}, such that4 ∥Xi − Xi−1∥ ≤ 1 for

i = 2, 3, . . . , s and ∥X1 − x∥ ≤ 1 and ∥Xs − y∥ ≤ 1 for some x ∈ {0} × [0, a] and y ∈ {b} × [0, a]. A top-bottom
crossing is defined similarly but with x ∈ [0, b] × {0} and y ∈ [0, b] × {a}. If a = b, we simply denote the square box by
Ba.

Define LR(a) to be the event that there is a left right crossing in a rectangular box Ra = Ba,2a = [0, 2a] × [0, a]. The
probability of LR(a) in the super-critical region is exponentially close to 1 as formalized in [45, Lemma 10.5]. We reproduce
the same here.

Lemma B.1. For λ > λc , there exists c > 0 and a1 > 0 such that 1 − P(LR(a)) ≤ exp(−ca) for all a ≥ a1.

We will use this lemma to obtain the probability of a left–right crossing in a sm×m rectangular box, where sm ≪ m. Let
CR be the event that there is a left–right crossing of the box B = [0,m]× [0, sm]. We then have the following proposition.

Proposition B.2. For λ > λc , there exists c > 0 and a1 > 0 such that 1 − P(CR) ≤ 2
⌈

m
sm

⌉
exp(−csm) for all sm ≥ a1.

roof. Denote ℓ =

⌈
m
sm

⌉
. Let Bi = [(i−1)sm, ism]×[0, sm] for i ∈ {1, 2, . . . , ℓ} and let Rj = Bj∪Bj+1 for j ∈ {1, 2, . . . , ℓ−1}

(see Fig. B.7). Define LRj to be the event that there is a left–right crossing in Rj and let TBi be the event that there is a
top-bottom crossing of Bi. Notice that

CR ⊇

ℓ⋂
i=1

TBi ∩

ℓ−1⋂
j=1

LRj,

which gives

P(CRc) ≤

ℓ∑
i=1

P(TBc
i ) +

ℓ−1∑
j=1

P(LRc
j ).

The probability of there being no left–right crossings in the rectangles Rj, for j ∈ {1, 2, . . . , ℓ − 1}, are identical (due
to translation invariance) and hence the latter term in the above expression can be replaced by (ℓ − 1)P(LRc

1). For the
first term, note that absence of a top-bottom crossing of Bi implies that there is no top-bottom crossing in the rectangle
R′

i = [(i − 1)sm, ism] × [0, 2sm]. But a top-bottom crossing in R′

i is the same as a left–right crossing in R1 (say), since the
underlying homogeneous Poisson point process Φ is isotropic. This gives

P(CRc) ≤ (2ℓ − 1)P(LRc
1),

which from Lemma B.1 gives the statement of the proposition. □

Next, we apply Proposition B.2 to the four rectangles surrounding Γr as depicted in Fig. B.8 . Let CRd for d ∈ {n, s, e, w}

be the event denoting the existence of crossings inside the four rectangles and let Annsm be the event that there is a
circuit in the annulus Γm−1 \ Γr as shown in Fig. B.8. Since the presence of crossings in the four rectangles ensures the
occurrence of Annsm , we obtain

P(Annc
sm ) ≤ P

(⋃
d

CRc
d

)
,

4 Here ∥ · ∥ is the L2 norm.
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Fig. B.8. Circuit formed by the four left–right crossings LRd, d ∈ {n, s, e, w}.

≤

∑
d

P(CRc
d),

≤ 8
⌈
m
sm

⌉
exp(−csm).

We state this formally in the following proposition.

Proposition B.3. For λ > λc , there exists c > 0 and a1 > 0 such that 1 − P(Annsm ) ≤ 8
⌈

m
sm

⌉
exp(−csm) for all sm ≥ a1.

emark. Note that the statement of the above proposition holds even with respect to the Palm probability P0. This is
ecause introducing a point at the origin does not affect the event Annsm , and hence P0(Annsm ) = P(Annsm ).

Appendix C. Proof of Theorem 7.7

Theorem C.1 (Restatement of Theorem 7.7). For λp > λc , we have

lim
m→∞

E(0,1)
A

[
Rk,n(Gm)
|C0(Gm)|

]
=

1
θ (λ)2

n∑
t=k

(
n
t

)
θ ext
k,t P(0,1)(Aext

[t] ).

roof. Step 1: We first evaluate

lim
m→∞

E(0,1)
[
Rk,n(Gm)
|C0(Gm)|

1A

]
= lim

m→∞
E(0,1)

[
Rk,n(Gm)1A

|C0(Gm)|1A

]
and then divide it by P(A) = P(0 ∈ C(G0)) = θ (λ) to obtain the required conditional expectation. We take the convention
that 0

0 = 0. Note that Assumption 1 ensures that θ (λ) > 0.
Step 2: Specializing the statement of Theorem 7.1 on the event A, we obtain

lim
m→∞

|C0(G0
m)|

λm2 1A = lim
m→∞

|C0(G0) ∩ Γm|

λm2 1A P-a.s.

Notice that on the event A, C0(G0) = C(G0). Using (A.1), (8) and the note following Lemma 7.5, we have for λ > λc

lim
m→∞

|C0(Gm)|
λm2 1A = lim

m→∞

|C(G) ∩ Γm|

λm2 1A

= θ (λ)1A P0-a.s.

Conditional on the mark of the origin Z(0) = 1, we have

lim
|C0(Gm)|1A = θ (λ)1A P(0,1)-a.s.
m→∞ λm2
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Step 3: Let Rk,n(G) be the set of nodes that receive at least k out of the n packets from the origin when probabilistic
forwarding is carried out on G. Using arguments similar to those of Theorem 7.1 for nodes without Γm-conduits, we have
that

lim
m→∞

E(0,1)
[
Rk,n(Gm)

λm2 1A

]
= lim

m→∞
E(0,1)

[
|Rk,n(G) ∩ Γm|

λm2 1A

]
.

Step 4: For T ⊆ [n], let Aext
T be the event that the origin is present in exactly the IECs indexed by T . Conditioning on

the event Aext
T , we obtain

E(0,1)
[

|Rk,n(G) ∩ Γm|

λm2 1A

]
=

n∑
t=0

∑
T⊆[n]
|T |=t

E(0,1)
[

|Rk,n(G) ∩ Γm|

λm2 1A

⏐⏐⏐⏐Aext
T

]
P(0,1)(Aext

T ). (C.1)

If |T | < k, then the nodes of Rk,n(G) within Γm must reside in finite clusters whose fraction vanishes in the limit of
large m. If |T | ≥ k, then it is only the nodes which are within at least k IECs among those packet transmissions which
are indexed by T , that contribute towards the expectation. Denote such nodes by Rk,T . The remaining nodes of Rk,n(G)
within Γm, must be in at least one finite cluster and hence their fraction vanishes in the limit. Additionally, given Aext

T for
|T | > 0, the 0 must be present in the infinite cluster of the underlying graph i.e., 1A = 1. Putting all these together, we
obtain

lim
m→∞

E(0,1)
[

|Rk,n(G) ∩ Γm|

λm2 1A

]
=

lim
m→∞

n∑
t=k

∑
T⊆[n]
|T |=t

E(0,1)
[

|Rk,T ∩ Γm|

λm2

⏐⏐⏐⏐Aext
T

]
P(0,1)(Aext

T ). (C.2)

Step 5: Define O to be the event that the origin has mark 1 in all the n packet transmissions. The expectation on the
RHS in the above equation can be written as

E(0,1)
[

|Rk,T ∩ Γm|

λm2

⏐⏐⏐⏐Aext
T

]
= E0

[
|Rk,T ∩ Γm|

λm2

⏐⏐⏐⏐Aext
T ∩ O

]
.

Rk,T is independent of the packet transmissions which are not in T . The event O can be thus restricted to only those
indices in T . However, the conditioning event Aext

T ∩ O is then the event that 0 is in the infinite cluster C+ in the packet
ransmissions indexed by T . Call this event A+

T . We then have

E(0,1)
[

|Rk,T ∩ Γm|

λm2

⏐⏐⏐⏐Aext
T

]
= E0

[
|Rk,T ∩ Γm|

λm2

⏐⏐⏐⏐A+

T

]
(C.3)

Step 6: Conditional on the event A+

T , the set Rk,T has the same distribution as the set Cext
k,|T |

, which was defined in
ection 6.3. This gives

E0
[

|Rk,T ∩ Γm|

λm2

⏐⏐⏐⏐A+

T

]
= E0

[
|Cext

k,|T |
∩ Γm|

λm2

]
.

rom Proposition A.4, by taking limits as m → ∞, the expectation with respect to the Palm probability, E0, can be written
n terms of the expectation E, yielding

lim
m→∞

E0
[

|Rk,T ∩ Γm|

λm2

⏐⏐⏐⏐A+

T

]
= lim

m→∞
E

[
|Cext

k,|T |
∩ Γm|

λm2

]
(C.4)

Step 7: Using (12) with n replaced by |T | = t and employing DCT, we obtain

lim
m→∞

E

[
|Cext

k,|T |
∩ Γm|

λm2

]
= θ ext

k,t (λ, p) (C.5)

Step 8: Clubbing the expressions from (C.3), (C.4) and (C.5) into (C.2), and using C.1, we obtain

lim
m→∞

E(0,1)
[
Rk,n(Gm)

λm2 1A

]
=

n∑
t=k

∑
T⊆[n]

θ ext
k,t P(0,1)(Aext

T ).
|T |=t
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Step 9: The event Aext
T can be expressed as

Aext
T =

⋂
i∈T

{0 ∈ Cext
i }

⋂
j/∈T

{0 /∈ Cext
j }.

ere, Cext
1 , Cext

2 , . . . , Cext
n denote the IECs corresponding to the n packet transmissions. Since {0 ∈ Cext

i } = {B1(0)∩C+

i ̸= ∅},
he event Aext

T does not depend on the specific mark of 0. Furthermore, the event Aext
T does not depend on the specific

hoice of the set T , but just on the cardinality |T |. This is because a relabelling of the packets does not alter the probability
f Aext

T . For a particular value of |T | = t , define

Aext
[t] =

t⋂
i=1

{0 ∈ Cext
i }

n⋂
j=t+1

{0 /∈ Cext
j }.

otice now that the terms within the summation in Step 7, θ ext
k,t P(0,1)(Aext

T ) are identical for different T with the same
cardinality. Therefore,

lim
m→∞

E(0,1)
[
Rk,n(Gm)

λm2 1A

]
=

n∑
t=k

(
n
t

)
θ ext
k,t P(0,1)(Aext

T ).

Step 10: Putting together the results from Step 2 and Step 9 and dividing by θ (λ) gives the statement of the theorem. □

eferences

[1] R. Vaze, Random Wireless Networks, Cambridge Univ. Press, 2015.
[2] M. Franceschetti, R. Meester, Random Networks for Communication: From Statistical Physics To Information Systems, Cambridge Univ. Press,

2008.
[3] Y.-C. Tseng, S.-Y. Ni, Y.-S. Chen, J.-P. Sheu, The broadcast storm problem in a mobile ad hoc network, Wirel. Netw. 8 (2/3) (2002) 153–167.
[4] F. Forero Rodríguez, Geometric Aspects and Random Delays in Probabilistic Broadcasting for Wireless Ad Hoc Networks (Ph.D. thesis), Univ.

Estadual de Campinas, Brazil, and Univ. de Los Andes, Colombia, 2019.
[5] Y. Sasson, D. Cavin, A. Schiper, Probabilistic broadcast for flooding in wireless mobile ad hoc networks, in: Proc. WCNC 2003, Vol. 2, 2003, pp.

1124–1130.
[6] Z.J. Haas, J.Y. Halpern, L. Li, Gossip-based ad hoc routing, IEEE/ACM Trans. Netw. 14 (3) (2006) 479–491.
[7] B.R. Vinay Kumar, N. Kashyap, Probabilistic forwarding of coded packets on networks, IEEE/ACM Trans. Netw. 29 (1) (2021) 234–247,

http://dx.doi.org/10.1109/TNET.2020.3031467.
[8] B. Williams, T. Camp, Comparison of broadcasting techniques for mobile ad hoc networks, in: Proc. 3rd ACM Int. Symp. Mobile Ad Hoc

Networking & Computing, 2002, pp. 194–205.
[9] C. Fragouli, J. Widmer, J.-Y. Le Boudec, Efficient broadcasting using network coding, IEEE/ACM Trans. Netw. 16 (2) (2008) 450–463.

[10] S. Wang, G. Tan, Y. Liu, H. Jiang, T. He, Coding opportunity aware backbone metrics for broadcast in wireless networks, IEEE Trans. Parallel
Distrib. Syst. 25 (8) (2013) 1999–2009.

[11] T. Ho, M. Médard, R. Koetter, D.R. Karger, M. Effros, J. Shi, B. Leong, A random linear network coding approach to multicast, IEEE Trans. Inform.
Theory 52 (10) (2006) 4413–4430.

[12] T.A. Courtade, R.D. Wesel, Efficient universal recovery in broadcast networks, in: 2010 48th Annual Allerton Conference on Communication,
Control, and Computing, Allerton, 2010, pp. 1542–1549, http://dx.doi.org/10.1109/ALLERTON.2010.5707096.

[13] D. Platz, D.H. Woldegebreal, H. Karl, Random network coding in wireless sensor networks: Energy efficiency via cross-layer approach, in: 2008
IEEE 10th International Symposium on Spread Spectrum Techniques and Applications, 2008, pp. 654–660.

[14] X. Wang, R. Hu, L. Wang, D. Gao, Y. Su, B. Yang, An efficient network-wide reliable broadcast protocol for medical sensor networks, in:
Industrial IoT Technologies and Applications: 4th EAI International Conference, Industrial IoT 2020, Virtual Event, December 11, 2020, Springer
International Publishing, 2021, pp. 34–44.

[15] M.A. Graham, A. Ganesh, R.J. Piechocki, Fountain coding enabled data dissemination for connected and automated vehicles, in: 2019 IEEE 89th
Vehicular Technology Conference, VTC2019-Spring, 2019, pp. 1–5, http://dx.doi.org/10.1109/VTCSpring.2019.8746545.

[16] K. Al Agha, N. Kadi, I. Stojmenovic, Fountain codes with XOR of encoded packets for broadcasting and source independent backbone in multi-hop
networks using network coding, in: 2009 IEEE 69th Vehicular Technology Conference, VTC2009-Spring, 2009, pp. 1–5.

[17] M.S. Zaman, G. RamaMurthy, A new degree distribution for LT codes for broadcasting in ad-hoc network using network coding, in: 2009 1st
UK-India International Workshop on Cognitive Wireless Systems, UKIWCWS, 2009, pp. 1–5, http://dx.doi.org/10.1109/UKIWCWS.2009.5749389.

[18] N. He, Y. Xu, J. Cao, Z. Li, H. Chen, Y. Ren, ROME: Rateless online MDS code for wireless data broadcasting, in: 2010 IEEE Global
Telecommunications Conference, GLOBECOM, 2010, pp. 1–5, http://dx.doi.org/10.1109/GLOCOM.2010.5683211.

[19] A. Gaba, S. Voulgaris, K. Iwanicki, M. van Steen, Revisiting gossip-based ad-hoc routing, in: 2012 21st International Conference on Computer
Communications and Networks, ICCCN, 2012, pp. 1–6, http://dx.doi.org/10.1109/ICCCN.2012.6289312.

[20] I.S. Lysiuk, Z.J. Haas, Controlled gossiping in ad hoc networks, in: 2010 IEEE Wireless Communication and Networking Conference, 2010, pp.
1–6, http://dx.doi.org/10.1109/WCNC.2010.5506346.

[21] A. Khelil, P.J. Marrón, C. Becker, K. Rothermel, Hypergossiping: A generalized broadcast strategy for mobile ad hoc networks, Ad Hoc Netw. 5
(5) (2007) 531–546.

[22] B. Bako, E. Schoch, F. Kargl, M. Weber, Optimized position based gossiping in VANETs, in: 2008 IEEE 68th Vehicular Technology Conference,
2008, pp. 1–5, http://dx.doi.org/10.1109/VETECF.2008.449.

[23] P. Kyasanur, R.R. Choudhury, I. Gupta, Smart gossip: An adaptive gossip-based broadcasting service for sensor networks, in: 2006 IEEE
International Conference on Mobile Ad Hoc and Sensor Systems, 2006, pp. 91–100, http://dx.doi.org/10.1109/MOBHOC.2006.278671.

[24] J. Leitao, J. Pereira, L. Rodrigues, Epidemic broadcast trees, in: 2007 IEEE 26th International Symposium on Reliable Distributed Systems, SRDS,
2007, pp. 301–310, http://dx.doi.org/10.1109/SRDS.2007.27.

[25] J. Cartigny, D. Simplot, Border node retransmission based probabilistic broadcast protocols in ad-hoc networks, in: Proc. of the 36th Annual
Hawaii International Conference on System Sciences, 2003, 2003, http://dx.doi.org/10.1109/HICSS.2003.1174853, 10 pp.–.
26

http://refhub.elsevier.com/S0166-5316(23)00013-5/sb1
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb2
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb2
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb2
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb3
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb4
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb4
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb4
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb5
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb5
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb5
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb6
http://dx.doi.org/10.1109/TNET.2020.3031467
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb8
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb8
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb8
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb9
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb10
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb10
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb10
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb11
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb11
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb11
http://dx.doi.org/10.1109/ALLERTON.2010.5707096
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb13
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb13
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb13
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb14
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb14
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb14
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb14
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb14
http://dx.doi.org/10.1109/VTCSpring.2019.8746545
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb16
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb16
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb16
http://dx.doi.org/10.1109/UKIWCWS.2009.5749389
http://dx.doi.org/10.1109/GLOCOM.2010.5683211
http://dx.doi.org/10.1109/ICCCN.2012.6289312
http://dx.doi.org/10.1109/WCNC.2010.5506346
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb21
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb21
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb21
http://dx.doi.org/10.1109/VETECF.2008.449
http://dx.doi.org/10.1109/MOBHOC.2006.278671
http://dx.doi.org/10.1109/SRDS.2007.27
http://dx.doi.org/10.1109/HICSS.2003.1174853


B.R. Vinay Kumar, N. Kashyap and D. Yogeshwaran Performance Evaluation 160 (2023) 102343
[26] V. Drabkin, R. Friedman, G. Kliot, M. Segal, RAPID: Reliable probabilistic dissemination in wireless ad-hoc networks, in: 2007 IEEE 26th
International Symposium on Reliable Distributed Systems, SRDS, 2007, pp. 13–22, http://dx.doi.org/10.1109/SRDS.2007.9.

[27] V. Drabkin, R. Friedman, G. Kliot, M. Segal, On reliable dissemination in wireless ad hoc networks, IEEE Trans. Dependable Secure Comput. 8
(6) (2010) 866–882.

[28] A.M. Hanashi, A. Siddique, I. Awan, M. Woodward, Performance evaluation of dynamic probabilistic flooding under different mobility models in
MANETs, in: 2007 International Conference on Parallel and Distributed Systems, 2007, pp. 1–6, http://dx.doi.org/10.1109/ICPADS.2007.4447829.

[29] X.M. Zhang, E.B. Wang, J.J. Xia, D.K. Sung, A neighbor coverage-based probabilistic rebroadcast for reducing routing overhead in mobile ad hoc
networks, IEEE Trans. Mob. Comput. 12 (3) (2012) 424–433.

[30] Q. Zhang, D. Agrawal, Analysis of leveled probabilistic routing in mobile ad hoc networks, in: 2004 IEEE International Conference on
Communications (IEEE Cat. No.04CH37577), Vol. 7, 2004, pp. 3896–3900, http://dx.doi.org/10.1109/ICC.2004.1313282.

[31] H. Ling, D. Mossé, T. Znati, Coverage-based probabilistic forwarding in ad hoc routing, in: Proc. of the 14th International Conference on Computer
Communications and Networks,, ICCCN, 2005, pp. 13–18.

[32] A. Mohammed, M. Ould-Khaoua, L.M. Mackenzie, J.-D. Abdulai, Dynamic probabilistic counter-based broadcasting in mobile ad hoc networks,
in: 2009 2nd International Conference on Adaptive Science & Technology, ICAST, 2009, pp. 120–127.

[33] N. Wisitpongphan, O. Tonguz, Scalable broadcast strategies for ad hoc routing protocols, in: 2006 1st International Symposium on Wireless
Pervasive Computing, 2006, p. 6, http://dx.doi.org/10.1109/ISWPC.2006.1613593.

[34] L. Zhou, NPPB: A broadcast scheme in dense VANETs, Inform. Technol. J. 9 (2) (2010) 247–256.
[35] H.Y. Adarbah, S. Ahmad, B. Arafeh, A. Duffy, Efficient broadcasting for route discovery in mobile ad-hoc networks, in: 2015 International

Symposium on Performance Evaluation of Computer and Telecommunication Systems, SPECTS, 2015, pp. 1–7.
[36] P. Shete, R. Awale, Channel quality based adaptive gossip flooding mechanism for AODV, in: 2015 13th International Symposium on Modeling

and Optimization in Mobile, Ad Hoc, and Wireless Networks, WiOpt, 2015, pp. 553–559.
[37] D.G. Reina, S. Toral, P. Johnson, F. Barrero, A survey on probabilistic broadcast schemes for wireless ad hoc networks, Ad Hoc Netw. 25 (2015)

263–292.
[38] C.-C. Shen, Z. Huang, C. Jaikaeo, Directional broadcast for mobile ad hoc networks with percolation theory, IEEE Trans. Mob. Comput. (4) (2006)

317–332.
[39] G. Koufoudakis, K. Oikonomou, G. Tsoumanis, Adapting probabilistic flooding in energy harvesting wireless sensor networks, J. Sens. Actuator

Netw. 7 (3) (2018) URL https://www.mdpi.com/2224-2708/7/3/39.
[40] W. Evans, C. Kenyon, Y. Peres, L.J. Schulman, Broadcasting on trees and the ising model, Ann. Appl. Probab. (2000) 410–433.
[41] A. Makur, E. Mossel, Y. Polyanskiy, Broadcasting on two-dimensional regular grids, 2020, arXiv Preprint, URL https://arXiv:2010.01390.
[42] S.N. Chiu, D. Stoyan, W.S. Kendall, J. Mecke, Stochastic geometry and its applications, John Wiley & Sons, 2013.
[43] F. Baccelli, B. Błaszczyszyn, Stochastic Geometry and Wireless Networks, Volumes I and II, Now Publishers Inc, 2010.
[44] B.R. Vinay Kumar, N. Kashyap, R. Antony, The effect of introducing redundancy in a probabilistic forwarding protocol, in: 2018 Twenty Fourth

National Conference on Communications, NCC, 2018, pp. 1–6, http://dx.doi.org/10.1109/NCC.2018.8599936.
[45] M. Penrose, Random Geometric Graphs, Oxford Univ. Press, 2003.
[46] J. Quintanilla, S. Torquato, R.M. Ziff, Efficient measurement of the percolation threshold for fully penetrable discs, J. Phys. A: Math. Gen. 33

(42) (2000) L399.
[47] F. Baccelli, B. Błaszczyszyn, M.K. Karray, Random Measures, Point Processes, and Stochastic Geometry, 2020, preprint, URL https://web.ma.

utexas.edu/simons/wp-content/uploads/2020/02/BBK.pdf.
[48] J. Dall, M. Christensen, Random geometric graphs, Phys. Rev. E 66 (1) (2002) 016121.
[49] W.H.J. Debany, M.H. Linderman, Power Law Models For Connectivity of Random Geometric Graphs, AFRL/RI - Information Directorate, 2022,

URL https://apps.dtic.mil/sti/citations/AD1187085.
[50] P. Villegas, T. Gili, A. Gabrielli, G. Caldarelli, Characterizing spatial point processes by percolation transitions, J. Stat. Mech. Theory Exp. 2022

(7) (2022) 073202.
[51] S. Ramanathan, E.L. Lloyd, Scheduling algorithms for multihop radio networks, IEEE/ACM Trans. Netw. 1 (2) (1993) 166–177.
[52] T.-T. Nguyen, T. Kim, T. Kim, A distributed TDMA scheduling algorithm using topological ordering for wireless sensor networks, IEEE Access 8

(2020) 145316–145331.
[53] S. Durrani, X. Zhou, A. Chandra, Effect of vehicle mobility on connectivity of vehicular ad hoc networks, in: 2010 IEEE 72nd Vehicular Technology

Conference-Fall, 2010, pp. 1–5.
[54] Z. Khan, P. Fan, S. Fang, On the connectivity of vehicular ad hoc network under various mobility scenarios, IEEE Access 5 (2017) 22559–22565.
[55] C. Chen, X. Du, Q. Pei, Y. Jin, Connectivity analysis for free-flow traffic in VANETs: A statistical approach, Int. J. Distrib. Sens. Netw. 9 (10)

(2013) 598946.
[56] A. Pramanik, B. Choudhury, T.S. Choudhury, W. Arif, J. Mehedi, Simulative study of random waypoint mobility model for mobile ad hoc networks,

in: 2015 Global Conference on Communication Technologies, GCCT, 2015, pp. 112–116.
[57] E. Altman, F. De Pellegrini, Forward correction and fountain codes in delay-tolerant networks, IEEE/ACM Trans. Netw. 19 (1) (2010) 1–13.
[58] E. Altman, F. De Pellegrini, L. Sassatelli, Dynamic control of coding in delay tolerant networks, in: 2010 Proceedings IEEE INFOCOM, IEEE, 2010,

pp. 1–5.
[59] L. Rashidi, D. Towsley, A. Mohseni-Kabir, A. Movaghar, On the performance analysis of epidemic routing in non-sparse delay tolerant networks,

IEEE Trans. Mob. Comput. (2022).
[60] C. Rao, E. Modiano, Age of broadcast and collection in spatially distributed wireless networks, 2022, arXiv preprint arXiv:2212.05094.
[61] M. Wang, Y. Dong, Broadcast age of information in CSMA/CA based wireless networks, in: 2019 15th International Wireless Communications

& Mobile Computing Conference, IWCMC, IEEE, 2019, pp. 1102–1107.
[62] C. Hirsch, B. Jahnel, E. Cali, Percolation and connection times in multi-scale dynamic networks, Stochastic Process. Appl. 151 (2022) 490–518.

B.R. Vinay Kumar received a B.E.(Hons.) in Electrical and Electronics Engineering and an M.Sc.(Hons.) in Mathematics from the Birla Institute of
Technology and Sciences, Pilani, India. He obtained his Ph.D. from the Department of Electrical Communication Engineering at the Indian Institute
of Science, Bengaluru. He is currently a post-doctoral researcher with the NEO team at INRIA Sophia Antipolis, France. His research interests lie in
areas of stochastic geometry, community detection on graphs, percolation theory and random graphs.

Navin Kashyap received a B.Tech. degree in Electrical Engineering from the Indian Institute of Technology, Bombay, in 1995, an M.S. in Mathematics
and a Ph.D. in Electrical Engineering from the University of Michigan, Ann Arbor, in 2001. After a two-year postdoctoral stint at the University of
California, San Diego, he joined the faculty of the Department of Mathematics and Statistics at Queen’s University, Kingston, Ontario, Canada, where
he remained till December 2010. Thereafter, he has been with the Department of Electrical Communication Engineering at the Indian Institute of
27

http://dx.doi.org/10.1109/SRDS.2007.9
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb27
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb27
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb27
http://dx.doi.org/10.1109/ICPADS.2007.4447829
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb29
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb29
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb29
http://dx.doi.org/10.1109/ICC.2004.1313282
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb31
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb31
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb31
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb32
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb32
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb32
http://dx.doi.org/10.1109/ISWPC.2006.1613593
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb34
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb35
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb35
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb35
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb36
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb36
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb36
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb37
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb37
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb37
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb38
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb38
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb38
https://www.mdpi.com/2224-2708/7/3/39
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb40
https://arXiv:2010.01390
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb42
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb43
http://dx.doi.org/10.1109/NCC.2018.8599936
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb45
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb46
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb46
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb46
https://web.ma.utexas.edu/simons/wp-content/uploads/2020/02/BBK.pdf
https://web.ma.utexas.edu/simons/wp-content/uploads/2020/02/BBK.pdf
https://web.ma.utexas.edu/simons/wp-content/uploads/2020/02/BBK.pdf
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb48
https://apps.dtic.mil/sti/citations/AD1187085
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb50
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb50
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb50
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb51
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb52
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb52
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb52
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb53
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb53
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb53
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb54
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb55
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb55
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb55
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb56
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb56
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb56
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb57
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb58
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb58
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb58
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb59
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb59
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb59
http://arxiv.org/abs/2212.05094
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb61
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb61
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb61
http://refhub.elsevier.com/S0166-5316(23)00013-5/sb62


B.R. Vinay Kumar, N. Kashyap and D. Yogeshwaran Performance Evaluation 160 (2023) 102343
Science, where he is currently a Professor. His research interests lie primarily in the application of combinatorial, algebraic, and probabilistic methods
in information and coding theory.

D. Yogeshwaran’s bachelors degree was at Sri Sathya Sai Institute of Higher Learning, Puttaparthi. He received M.S. in Mathematics from the Indian
Institute of Science, Bangalore. He completed Ph.D. in Applied Probability from University of Pierre and Marie Curie (University of Paris 6). The Ph.D.
thesis was focused on ordering of point processes and its applications. He was a post-doctoral researcher at the Faculty of Electrical Engineering,
Technion, Haifa, Israel. Currently, he is a faculty at the Theoretical Statistics and Mathematics Unit at Indian Statistical Institute, Bangalore. His
research interests are in stochastic geometry and random topology.
28


	An analysis of probabilistic forwarding of coded packets on random geometric graphs
	Introduction
	Related work
	Coding based approaches
	Network coding
	Other coding schemes

	Probabilistic forwarding based approaches
	GOSSIP algorithm and variants

	Choice of forwarding probability
	Other variants of probabilistic forwarding


	Problem formulation
	Network setup
	Probabilistic forwarding on RGG

	Simulation results
	Point process preliminaries
	Random geometric graphs on R 2
	Marked point process
	Ergodic theorem

	Probabilistic forwarding and MPPs
	Single packet probabilistic forwarding
	Application of the ergodic theorem
	Probabilistic forwarding of multiple packets

	Main results
	Transmissions
	Minimum forwarding probability
	Comparison with simulations

	Heuristic estimates for the minimum forwarding probability and the optimal number of coded packets
	Discussion
	A note on our assumptions
	Communication aspects
	Optimization framework
	Bounds on θk,next

	Future work
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	Appendix A. Palm expectations of infinite cluster densities
	Appendix B. Estimates on some crossing probabilities
	Appendix C. Proof of Theorem 7.7
	References


