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broadcast. A source node at the origin encodes k data packets of information into n (> k)

Keywords: coded packets and transmits them to all its one-hop neighbours. The encoding is such
Probabilistic broadcast that, any node that receives at least k out of the n coded packets can retrieve the original
Percolation k data packets. Every other node in the network follows a probabilistic forwarding
Random geometric graph protocol; upon reception of a previously unreceived packet, the node forwards it with
Ad-hoc networks probability p and does nothing with probability 1—p. We are interested in the minimum

forwarding probability which ensures that a large fraction of nodes can decode the
information from the source. We deem this a near-broadcast. The performance metric
of interest is the expected total number of transmissions at this minimum forwarding
probability, where the expectation is over both the forwarding protocol as well as the
realization of the RGG. In comparison to probabilistic forwarding with no coding, our
treatment of the problem indicates that, with a judicious choice of n, it is possible to
reduce the expected total number of transmissions while ensuring a near-broadcast.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Ad-hoc networks are distributed networks with no centralized infrastructure. Applications involving the Internet of
Things (IoT), such as healthcare, smart factories and homes, intelligent transport etc., have led to wide-spread presence of
dense ad-hoc networks. Individual nodes in these networks are typically low-cost and energy-constrained, having limited
computational ability and knowledge of the network topology.

Wireless ad-hoc networks are often modelled using random network models. In particular, random geometric graphs
(RGGs) have been used in the literature to model spatially distributed networks (see e.g. [1,2]). These are generated by
scattering (a Poisson number of) nodes in a finite area uniformly at random and connecting nodes within a pre-specified
distance. The random distribution of nodes captures the variability in the deployment of the nodes of an ad-hoc network.
The distance threshold conforms to the maximum range at which a transmission from a node, with maximum power, is
received reliably. A more formal description of our network setting is provided in Section 3.
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Exchange of network-critical information for network control and routing happens primarily through broadcast mech-
anisms in these networks. A considerable number of broadcast mechanisms have been proposed in the literature. Naive
algorithms such as flooding, although being light-weight and easy to implement, give rise to unnecessary transmissions
and hence are not energy efficient. Flooding is also known to result in the ‘broadcast-storm’ problem (see [3]).

Probabilistic forwarding as a broadcast mechanism (see e.g., [4-6]) has been proposed in the literature as an alternative
to flooding. Here, each node, on receiving a packet for the first time, either forwards it to all its one-hop neighbours with
probability p or takes no action with probability 1 — p. While this mechanism reduces the number of transmissions,
reception of a packet by a network node is not guaranteed.

To improve the chances of a network node receiving a packet and to handle packet drops, we introduce coding along
with probabilistic forwarding. Let us suppose that the source possesses ks message packets which need to be broadcast.
These k; message packets are first encoded into n coded packets such that, for some k > ks, the reception of any k out of
the n coded packets by a node, suffices to retrieve the original ks message packets. Examples of codes with this property
are Maximum Distance Separable (MDS) codes (k = k;), fountain codes (k = ks(1 + €) for some € > 0) etc. which are
used in practice.

The source transmits the n coded packets to its one-hop neighbours and every other node in the network employs the
probabilistic forwarding mechanism described above. Subsequent receptions of the same packet by a network node are
neglected.

In this paper, we analyse the performance of the above algorithm on RGGs. In particular, we wish to find the minimum
retransmission probability p for which the expected fraction of nodes receiving at least k out of the n coded packets is close
to 1, which we deem a “near-broadcast”. Here, it is to be clarified that the expectation is over both the realization of the
RGG and the probabilistic forwarding protocol. This probability yields the minimum value for the expected total number
of transmissions across all the network nodes needed for a near-broadcast. The expected total number of transmissions
is taken to be a measure of the energy expenditure in the network.

To the best of our knowledge, we are the first to propose an algorithm that combines coding with a probabilistic
forwarding based broadcast mechanism. (A survey of the related literature is provided in Section 2.) Specifically, the
novelty in our proposed algorithm is to introduce redundancy in the form of coded packets into the probabilistic
forwarding mechanism. The randomness brought about by the probabilistic forwarding algorithm can be compensated
by the structural properties of the code we employ. This results in a simple, light-weight broadcast algorithm suitable for
distributed implementation on ad-hoc networks.

In our previous work [7], we analysed the probabilistic forwarding mechanism described here on deterministic graphs
such as trees and grids. It was found that introducing coded packets with probabilistic forwarding offered significant
energy benefits in terms of the number of transmissions needed for a near-broadcast on well-connected graphs such as
grids and other lattice structures. However, for d-regular trees, such energy savings were not observed. RGGs (in the
super-critical regime) show similar behaviour as grids, i.e., for an intelligently chosen value of the number of coded
packets, n, and the minimum forwarding probability, the energy expenditure in the network is considerably lesser for
a near-broadcast, when compared to the scenario of probabilistic forwarding with no coding.

In this paper, we justify these observations using rigorous methods. Specifically, this work aims to build a mathematical
framework to analyse the effect of introducing coding along with probabilistic forwarding for broadcasting on RGGs, which
form an important class of models for ad-hoc networks. While some of the techniques used in our analysis are similar to
those used for broadcasting on the grid in [7], we stress here that the additional complications due to the randomness of
the underlying graph calls for the use of more sophisticated techniques. Ideas from continuum percolation, ergodic theory
and Palm theory are employed to circumvent some of the technicalities encountered. These mathematical techniques
could be of independent interest for related problems. Moreover, our method of analysis may also extend to more general
broadcasting models and other point processes. Thus, we believe that our analysis of the proposed algorithm is in fact
one of the more useful contributions of this paper.

The rest of the paper is organized as follows. Section 2 provides a literature overview of broadcast mechanisms for ad-
hoc networks. In Section 3, we describe our network setup and formulate our problem. Section 4 provides the simulation
results of the probabilistic forwarding algorithm on RGGs. In Section 5, we provide definitions and notations of RGGs
on R%. Marked point processes (MPPs) are introduced to model probabilistic forwarding on the RGG. Section 6 relates
probabilistic forwarding and marked point processes. Ergodic theorems on MPPs are used to obtain some key quantities.
These will serve as the main ingredients in the analysis of the proposed algorithm on RGGs. Our main results are presented
in Section 7, culminating in estimates for the minimum retransmission probability (see (20)) and the associated expected
total number of transmissions (see (18)). Since the estimate for the minimum retransmission probability is difficult to
compute explicitly, in Section 8, we provide a heuristic approach which is used to compare the expressions obtained
theoretically with the simulation results. Section 9 discusses some aspects related to the assumptions and our results. In
Section 10, some questions arising from this work are highlighted as possible future directions of research. The appendix
contains technical results pertaining to the Palm expectations and the proof of one of our main theorems.

2. Related work

Algorithms for broadcast over ad-hoc networks have garnered considerable attention in the past. We refer the reader
to [8-10] and the references therein for a review of the broad categories of algorithms employed for broadcasting. We
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further supplement this list with references relevant to our work here. The broadcast algorithm proposed and analysed in
this paper is an amalgamation of probabilistic forwarding along with encoding of packets at the source. In the following,
we highlight relevant literature from these two areas.

2.1. Coding based approaches

Network coding

Network coding has been used for efficient data dissemination in wireless networks in [9-14]. In [11], the authors
propose random linear network coding (RLNC) for the multicast problem and give bounds on the probability that all
the receivers are successful in obtaining the packets. The authors in [13] compare the number of transmissions in the
RLNC based approach with that of store-and-forward approaches (which includes probabilistic forwarding) on a circular
network topology. Network coding schemes are shown to be energy-efficient. Similar deductions are made via simulations
in [14] for employing network coding in a medical sensor network. In [12], the authors provide transmission strategies
for universal recovery and arrive at necessary and sufficient conditions on the number of transmissions required using
network coding. However they assume complete knowledge of the network topology at every node.

Our worKk is closest in spirit to that in [9], where the authors propose a low-complexity distributed broadcast algorithm
that improves upon the number of transmissions in flooding by a constant factor. Their approach based on network coding
is well-suited for broadcasting on networks where individual nodes do not have any knowledge of the network topology,
especially since, in their setting, all the nodes in the network have messages to broadcast. On the other hand, in our case,
only a single source node has messages that need to be broadcast. This makes the two works incomparable.

Other coding schemes

Unlike network coding schemes, in our work, packets are encoded only at the source before transmission. The class of
codes that we propose includes, among others, fountain codes, which have been used widely in broadcast mechanisms
for ad-hoc networks. This is primarily because they form a convenient alternative to the ARQ (Automatic Repeat Request)
protocol. In the ARQ scheme, an acknowledgement (ACK) needs to be sent every time a packet is received. By employing
fountain codes, a node is required to send an ACK less frequently, thus saving on energy.

The authors in [15] employ fountain codes for broadcasting in vehicular networks. However, unlike our setting, all
the nodes are in a star topology and receive transmissions from the source through erasure channels. In [16,17], the
authors use Luby transform (LT) codes, a special case of fountain codes, which reduces the complexity of encoding and
decoding at the network nodes. The LT encoding is done by randomly selecting d packets from n packets and doing an
XOR of these packets to form a single encoded packet. The authors in [16] propose to employ LT codes in conjunction
with transmission over a source-independent backbone network. They show via simulations that this approach not only
reduces the number of transmissions required for flooding, but also reduces the packet delay. The variable d is an integer
which is chosen according to a distribution. In [ 17], the authors propose a new distribution on d which further brings down
the delay and the number of transmissions. However, both these approaches require the knowledge of a dominating set
which is a subset of nodes of the network such that every node in the network is either in this set or adjacent to a node of
this set. Finding a dominating set is computationally expensive. In [18], the authors construct novel codes called rateless
online MDS (ROME) codes for wireless broadcasting. They are shown to have lesser coding redundancy and number of
transmissions as compared to LT codes. However, they exploit feedback information from the receivers.

2.2. Probabilistic forwarding based approaches

Probabilistic forwarding mechanism, as described in Section 1, forms an energy-efficient alternative to the flood-
ing mechanism. An excellent summary of the recent literature on probabilistic broadcast mechanisms is provided in
[4, Chapter 3].

GOSSIP algorithm and variants

Probabilistic forwarding has also been referred to as the GOSSIP1(p) algorithm in [6]. The authors claim a 35% reduction
in the transmission overhead as compared to flooding. Further, several variants of the probabilistic GOSSIP1(p) protocol are
described, and heuristics and simulation results are provided for improving flooding and routing mechanisms in networks.

There have been numerous other works, for example see [19-23], which propose improvements on the GOSSIP
protocol. In [20], the authors target a similar problem as ours: achieve a high degree of network coverage with limited
number of transmissions. They even employ very similar analytical techniques based on continuum percolation to
characterize two gossip algorithms: global gossip and distributed gossip. However, they assume some knowledge of
the average degree of the random planar network at every node of the network. The authors in [24] propose a novel
approach to combine tree-based and gossip protocols in order to achieve both low message complexity and high reliability.
Hypergossiping has been proposed in [21] to overcome problems of connectivity in mobile ad-hoc networks. In [23],
the authors propose the smart gossip protocol which aims to adaptively set the forwarding probability at each node by
quantifying the “importance” of each node for achieving dissemination. However, all of these works evaluate the proposed
algorithm using extensive simulations and lack sound analytical characterization.
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Choice of forwarding probability

A significant portion of the literature on probabilistic forwarding dwells upon setting the forwarding probability based
on different approaches, some of which are highlighted below:

o Neighbour based approaches [25-30]: In these schemes, the forwarding probability is decided based on the number
of neighbours or the density of nodes in a region. The main rationale behind this approach is that, higher the density
or the number of one-hop neighbours, lower the forwarding probability.

o Area/distance based approaches [31-34]: In area-based schemes, the forwarding probability is set based on an
estimate of the additional area that will be covered by a node if it transmits. This additional area is estimated based
on either the number of copies a node receives or the distance from the node whose transmission it receives.

o Interference based schemes [35,36]: In such schemes, nodes in the network choose a forwarding probability based
on the signal strength with which they receive packets. Received signal strength is an indication of the channel
quality, and hence nodes transmit with higher probability when the channel is good.

There are numerous other approaches which combine different methods to set the forwarding probability. The
interested reader is referred to the survey paper [37] and Chapter 3 of [4].

While choosing the forwarding probability in a meaningful manner is also a motivation for our work, there are
two main differences between the previously considered schemes and ours. Firstly, the previous schemes require some
knowledge about the network topology, either in terms of the number of neighbours or distance from a nearest node
etc., which we do not assume in our work. Secondly, and more importantly, most of these are simulation-based studies
with no analytical backing. Our aim in this work is to provide a robust analytical framework to the algorithm we propose
which can perhaps be extended to analyse some of these algorithms as well.

Other variants of probabilistic forwarding

The authors in [38] map randomized broadcast mechanisms to percolation on networks, which is the approach we
take here as well. They, however, use directional antennas to reduce the transmission overhead and map it to a bond
percolation problem. In [39], the authors propose Robust Probabilistic Flooding mechanism which takes into account the
energy-harvesting nodes and the times they are active. The works in [40,41] consider broadcast problems on topologies
similar to ours but a different mechanism. In [40], the authors model each edge of a tree as a binary symmetric channel and
aim to recover the data present at the root of the tree using information from the nodes at level ¢. Similar considerations
are discussed on an infinite directed acyclic graph with the form of a 2D regular grid in [41].

3. Problem formulation

We begin by describing our setting for the specific case of random geometric graphs. This section introduces additional
notation specific to RGGs as well.

3.1. Network setup

A random geometric graph is parametrized by the intensity A and the distance threshold r. It suffices to study them
by keeping one of the parameters fixed. In our treatment, we will fix the distance parameter r to be equal to 1, and study
various properties as a function of the intensity, A.

Construct a random geometric graph Gy, with intensity A and distance threshold r = 1 on I3, := [j %]2 as follows:

2

e Step 1: Sample the number of points, N, from a Poisson distribution with mean Av(I},). Here, v(-) is the Lebesgue
measure on R?. Therefore, N ~ Poi(Am?).

e Step 2: Choose points X1, X5, ..., Xy uniformly and independently from I7,. These form the points of a Poisson point
process (see [42, Section 2.5]) @, and constitute the vertex set of G,.

o Step 3: Place an edge between any two vertices which are within Euclidean distance r = 1 of each other.

To carry out probabilistic forwarding over G, we need to fix a source. For this, we will assume that there is a point at
the origin 0 = (0, 0) € R2. More specifically, a graph G, is created with the underlying point process #° £ @ U {0}, as
the vertex set and introducing additional edges from 0 to nodes which are within B{(0), to the edge set of G,,. Here, B;(0)
(more generally, B;(v) for v € R?) is a closed Euclidean ball of radius 1 centred at 0 (v).

The inclusion of an additional point at the origin 0 means that all the probabilistic computations need to be made with
respect to the Palm probability given a point at the origin. We direct the reader to [43, Ch. 1.4] for an in-depth treatment
of Palm theory. Heuristically, the Palm probability must be interpreted as the probability conditional on the event that
tl})e origin is a point of the point process. We denote the Palm probability by P° and the expectation with respect to it by
E".

The origin here is a distinguished vertex. Broadcasts initiated from it can be received by the nodes which are present
in the component of the origin only. Denote by Co = Co(G%), the set of nodes in the component of the origin in G%. The
component of the origin in G% forms the underlying connected graph, which we denote by G.
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3.2. Probabilistic forwarding on RGG

Equipped with the underlying network, G, we now describe the probabilistic forwarding algorithm on it. The source,
0, encodes k; message packets into n coded packets and indexes them using integers from 1 to n. It then broadcasts
each of these packets individually, which are received by all its one-hop neighbours. Every other node in the network,
upon reception of a packet (say packet #j) uses the probabilistic forwarding mechanism: it broadcasts the packet with
probability p and takes no action with probability 1 — p. A packet forwarded by a node (a single broadcast) is received by
all its one-hop neighbours. Each packet is forwarded independently of other packets and other nodes. The node ignores
all subsequent receptions of packet #j, irrespective of the decision it took at the time of first reception. Packet collisions
and interference effects are neglected. See Section 9.2 for a discussion of this assumption.

We are interested in the following scenario. Let Ry ,(G) be the number of nodes in Cy that receive at least k out of the n
coded packets in G. We refer to these as successful receivers. We sometimes denote this by Ry ,(G%) to explicitly bring out
the dependence on m. Given a § > 0, we are interested in the minimum forwarding probability p, such that the expected
fraction of successful receivers is at least 1 — §. The expectation here is over the probabilistic forwarding protocol for
a fixed realization of G. In reality, the proposed broadcasting algorithm of probabilistic forwarding with coded packets,
should give a good performance for any realization of the underlying graph. In other words, we would want the expected
fraction of successful receivers to be at least 1 — §, for every realization of G. However, in our formulation we relax this
condition by asking for it only in an expected sense. More specifically, we define

Rin(GY
DPk,n,s =inf{p ‘ E[M} 21—8}, (1)

where the expectation is over both the graph G% as well as the probabilistic forwarding mechanism. Note that, from
our construction, Ry ,(G) = Rk,n(Gg) - CO(G?H). The number of successful receivers is normalized by the total number of
vertices in G, which is the same as the number of vertices within the component of the origin, |C0(G?n)|.

The performance measure of interest, denoted by 7y 5, is the expected total number of transmissions across all nodes
when the forwarding probability is set to py , 5. Here, it should be clarified that whenever a node forwards a packet to
all its one-hop neighbours, it is counted as a single broadcast transmission. Qur aim is to determine, for a given k and §,
how 7y, s varies with n, and the value of n at which it is minimized (if it is indeed minimized). To this end, it is necessary
to first understand the behaviour of py s as a function of n. In subsequent sections, we will formulate the probabilistic
forwarding mechanism as a marked point process and use results from ergodic theory to obtain the expected value of
the number of successful receivers and the overall number of transmissions.

4. Simulation results

In this section, we provide simulation results of our algorithm on random geometric graphs. For simulations on other
network topologies, we refer the reader to [7,44].

Simulations of the probabilistic forwarding mechanism with coded packets were performed on an RGG generated with
m = 101 and intensity A = 4.5 and 4. As stated before, the distance threshold parameter r was set to 1. The probabilistic
forwarding mechanism was carried out with k = 20 packets and n varying from 20 to 40. The value of § was set to 0.1.
Twenty realizations of G were generated and 10 iterations of the probabilistic forwarding mechanism was carried out
on each of the realizations. The fraction of successful receivers was averaged over each iteration and realization of the
graph. This was used to find the minimum forwarding probability, py s, required for a near-broadcast, which is plotted
in Fig. 1(a). The bars indicate bounds on py , s obtained using a 95% confidence interval around the computed empirical
average for the number of successful receivers. The py s values so obtained were further used to find the expected total
number of transmissions over the same realizations. The expected total number of transmissions i n s, normalized by
am?, which is the average number of points within I, is shown in Fig. 1(b) along with a 95% confidence interval around
the empirical average. This can be interpreted as the average number of transmissions per node in the graph.

Notice that the expected number of transmissions decreases initially to a minimum and then increases. The decrease
indicates the benefit of introducing coding along with probabilistic forwarding. The number of coded packets, n, and the
probability, py s, corresponding to the minimum point of Fig. 1(b) are the ideal parameters for operating the network to
obtain maximum energy benefits.

Further, it can be observed from Fig. 1(a), that the minimum forwarding probability, pk s, decreases to 0 with n. This
is formalized in the following lemma.

Lemma 4.1. For fixed values of k and §,

(a) pr.ns is a non-increasing function of n.
(b) pkns — 0asn — oo.

The proof is along similar lines as that for deterministic graphs expounded in [7]. However, unlike in deterministic
graphs where the total number of nodes in the graph is a constant (N), here, the denominator in the expression for
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(a) Minimum retransmission probability  (b) Expected total no. of transmissions

Fig. 1. Simulations on a random geometric graph generated on Ijo; with intensity A and distance threshold r = 1. Probabilistic forwarding done
with k = 20 packets and § = 0.1. The error bars correspond to a 95% confidence interval computed around the empirical averages.

the fraction of successful receivers comprises of the nodes in the component of the origin (see (1)), which is a random
quantity. Nevertheless, conditioning on the underlying point process, @, gives a deterministic graph, on which the result
for deterministic graphs can be used.

Proof. (a) Denote a realization of the random geometric graph G by g. Let us define E; to be the expectation over the
probabilistic forwarding protocol when the underlying graph is g. Using the tower property of expectation, we obtain

-+ 1]

Conditioned on a realization g of G, N (= |C0(G,21)|) is fixed and it is true that E, Ren > E, R"l’\;l‘] due to a similar

N
coupling argument as in [7, Lemma 1]. Therefore, we have that py , s is a non-increasing function of n even when the
underlying graph is random.

(b) For the second part, create L%J non-overlapping (i.e., disjoint) groups of k packets each. Fori = 1,2, ..., L,—'ZJ, let
A; be the event that the ith group of k coded packets is received by at least (1 — §/2)N nodes. For a fixed realization g
of the RGG, the randomness arises only because of the probabilistic forwarding mechanism. Since packets are forwarded
independently of each other, and any two events A; and A;, for i # j, depend on disjoint sets of packets (for fixed g),
they are independent conditioned on the RGG. In other words, conditional on G = g, the events A; are independent

and identically distributed (iid). Moreover, since we have a deterministic graph g, proceeding as in [7, Lemma 1], for all
sufficiently large n we have that E, L > 1 —§ for any realization g of G. Therefore E [R""" can be made arbitrarily

N N
close to 1 for sufficiently large n. This in turn means that py,s — 0asn — oco. O

5. Point process preliminaries

In this section, we introduce the tools required to characterize the performance of the probabilistic forwarding
algorithm. The probabilistic forwarding mechanism on the RGG is modelled using marked point processes which are
described here.

5.1. Random geometric graphs on R?

Our approach to analysing the probabilistic forwarding mechanism on G is to relate it to the probabilistic forwarding
mechanism on a RGG generated on the whole R? plane with the origin as the source. This means that the vertex set of
the RGG is a Poisson point process, @, on R%. We refer the reader to [2] or [43] for the background needed on Poisson
point processes. In particular, we use the procedure outlined in [43, Section 1.3] to construct the RGG on the whole R?
plane.

Create a tiling of the R? plane with translations of I}, i.e., Iij = (im, jm) 4+ I}, for i, j € Z. On each such translation,
I3, construct an independent copy of a Poisson point process with intensity A as described in steps 1 and 2 of Section 3.1.
The random geometric graph (G) is constructed by connecting vertices which are within distance 1 of each other. We then
say G ~ RGG(x, 1).

It is known that the RGG(A, 1) model on R? shows a phase transition phenomenon (see e.g. [45]). For A > A, the
critical intensity, there exists a unique infinite cluster, C = C(@®), in the RGG almost surely. The value of A, is not exactly
known, but simulation studies such as [46] indicate that A, & 1.44. The percolation probability 6(1) is defined as the
probability that the origin is present in the infinite cluster C, i.e., §(1) := P%0 e C). We remark here that there is no
known analytical expression for 6(1) nor are there good approximations. Since we are interested in large networks, we
will assume throughout our analysis that we operate in the super-critical region, i.e., A > A..
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5.2. Marked point process

During the course of the probabilistic forwarding protocol on the RGG, each node decides independently whether to
forward a particular packet with probability p. Marked point processes (MPPs) turn out to be a natural way to model such
functions of an underlying point process.

Definition 5.1. Let & = ), &x,' be a Poisson point process on R2. With each point X; of @&, associate a mark Z; taking
. iid ~ . .. .

values in some measurable space (K, K) such that {Z;}icy ~ T1(-). Then, @ = )", &(x, z) is called an iid marked point process

on R? x K with mark distribution IT(-).

We now state an ergodic theorem for MPPs which is used to obtain some key results required in the analysis of the
probabilistic forwarding protocol in Section 6.

5.3. Ergodic theorem

Let (£2, F, P) be the probability space over which an iid marked point process @ = > i€x.z) is defined with mark
distribution I7(-). Let 6, : 2 — £2, for x € R?, be the operator which shifts each point of @ by —x, i.e., 4@ = D i EX-x2)
and let (K, K) be the measurable space of marks. Let f : K x 2 — R, be a non-negative function of the MPP. Then, by
the ergodic theorem for marked random measures (see [47, Theorem 8.4.4]), we have

L Z f(Zi, Oy () — A / E®? [f(z, w)] [1(dz) P-ass. (2)
K

v(Im) Xielm

as m — oo, where E(®? is the expectation with respect to the Palm probability P(®? conditional on the mark, z. If
f(z, w) = f(w), then (2) reduces to

1
V()

D fx(@) = AE ()] Pas. (3)

Xielm

6. Probabilistic forwarding and MPPs

In this section, we formulate the probabilistic forwarding mechanism using the framework of marked point processes
(MPPs). Ergodic theorems applied to MPPs are used to obtain the limiting values for the fraction of nodes in the infinite
cluster (8) and in the infinite extended cluster (11). These help in obtaining estimates for py s and 7 s in Section 7. It
should be noted here that all the graphs and point processes discussed in this section are defined on the whole R? plane.

6.1. Single packet probabilistic forwarding

Consider the probabilistic forwarding of a single packet on G ~ RGG(®, 1) defined on a Poisson point process (PPP)
@ of intensity A on R2. Let G° be the graph created with the underlying point process being ®° £ & U {0} as the vertex
set, and introducing additional edges from 0 to nodes which are within B1(0), to the edge set of G. We assign a mark 1
to a node if it decides to transmit the packet and 0 otherwise. Thus, the mark space is K = {0, 1} and @ is an iid MPP
with a Ber(p) mark distribution. Note that the origin, 0, has mark 1 since it always transmits the packet. Also, the subset
of nodes which have mark 1 form a thinned point process of intensity Ap, and the subset of vertices with mark 0 form a
A(1 — p)-thinned process. Denote these by @+ and @~ respectively, and the corresponding RGGs by ¢ and G~. Notice
that the set of vertices of @™ which are in the same cluster as the origin are the vertices which receive the packet from
the source and transmit it. Thus, the number of vertices in the cluster containing the origin in G* (call this set of nodes
|C{;r |, is the number of transmissions of the packet.

In addition to the nodes of the cluster containing the origin in G*, the nodes of G~ which are within distance 1 from
them, also receive the packet. To account for them, we define for any cluster of nodes S C @™, the boundary of S as

S ={ve @ |Bi(v)NS # 0},

and the extended cluster of S to be St = SU3S. Then, the receivers are the nodes in CS’“. We refer to this as the extended
cluster of the origin.

Our interest is in large networks in which the origin is likely to be in the infinite cluster of G°. Moreover, since we are
interested in a large fraction of nodes in the network to be successful receivers, the extended cluster of the origin has
to comprise of a significant number of nodes within 77,. In the limit of large m, this means that the extended cluster of
the origin is the infinite extended cluster (IEC), C®*¢, defined as the extended cluster of C* := C(®™). This also means that
the transmitters correspond to the nodes within I, of the infinite cluster of @, C*. Thus, in the thermodynamic limit,

1 Here &y is the Dirac measure at x; for A C R?, x(A) =1 if x € A and ,(A) =0 if x ¢ A.

7
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Fig. 2. Percolation probability 6()) vs. intensity A.

the expected number of vertices in Co N I3, (resp. Cg’“ N Iy,) is well-approximated by the expected number of vertices
within I7, of the infinite cluster C* (resp., of the IEC C®*') for large m. We use the ergodic theorem stated in Section 5.3
to obtain almost sure results for the fraction of nodes within I, of the infinite cluster C* and the IEC C®*! in terms of the
percolation probability 6(A).

6.2. Application of the ergodic theorem

Specializing the statement in (2) to the probabilistic forwarding of a single packet where K = {0, 1} and the marks
are independent, conditional on @, with distribution given by I7(1) = 1 — I7(0) = p, we obtain,

1
e Xi;mf(zf, Ox, ()
2 ApECVF(1, w)] + A1 — p) ECO[f(0, w)] P-a.s. (4)

We will now use (3) and (4) to obtain key results which will be used to analyse the probabilistic forwarding of a single
packet on R2. In particular, we substitute different functions f in (3) and (4) to obtain the following results:

e f(z, w) = 1. The ergodic theorem in (3) results in
¢(Fm) m—oo
—
V(1)
As a corollary, taking the reciprocals, we obtain

mz m— 00 1

—_— - P-a.s., 6

®(I) X (6)
which holds in our setting since A > A..

e f(z, w) = z. Substituting in (4), we see that the sum on the LHS counts the number of nodes which have mark 1 in
I',. Indeed, we obtain

¢+(Fm) m—o00
() — Ap P-a.s. (7)

A P-a.s. (5)

e Let C be the unique infinite cluster in G. Using the ergodic theorem in (3) with f(z, w) = 1{0 € C}, we see that the
sum on the LHS counts the number of vertices of @ which are present in the infinite cluster. Then, we have that

CN Iyl mo
1€A Finl m~co CION) P-a.s. (8)
v(Im)
Using the dominated convergence theorem (DCT) and (6), we also have that
cnr N
E ["“'] = ). (9)
D(Im)

This means that, for large m, the expected fraction of vertices of the infinite cluster within I}, is a good approximation
for the percolation probability. We use this to obtain an empirical estimate of the percolation probability as follows.
We generate 100 instantiations of the RGG(A, 1) model on s, for each value of A between 1 and 5 (in steps of
0.01). The average number of vertices in the largest cluster within I';5; is computed and taken as a proxy for the
fraction of nodes of the infinite cluster. The graph obtained is shown in Fig. 2. We use the values from this plot in
our numerical results. Similar plots are obtained in other works such as [48-50].

e Suppose Ap > A, so that G+ operates in the super-critical region. Let C* be the unique infinite cluster in G*. Since
@™ is a thinned point process of intensity Ap, we can use the result from (8) for the infinite cluster C* to obtain

ICT Nl moso
_ —

T Ap 6(1p) P-a.s. (10)



B.R. Vinay Kumar, N. Kashyap and D. Yogeshwaran Performance Evaluation 160 (2023) 102343

e Suppose that Ap > A. and let C®* denote the extended cluster of CT, i.e. C®** = C* U 9C™. Note that since
C* is infinite, C®*! is also infinite. Hence, we refer to it as the infinite extended cluster, or IEC for short. Take
flw) = 1(B1(0) N C(@T1) # 0). Observe that {X; € C*} = 1(By(X;) N C(@1) # @) = f(Ox,w). So, using (3), we

have that
! D 1{X € ™) 5 AR(B1(0) N C(@T) # ) P-a.s
v(Im) : ! -

Xielm
By definition, P(B1(0) N C(® ") # @) = 6(Ap), the percolation probability of @*. We then have,

C*'N Iyl m—
1€ N Ll moeo AO(Ap) P-a.s. (11)
V()

Thus, it is natural to define, (%, p) := P%(0 € C®™%) = §(Ap).

Comparing RHS of (7) and (11) suggests an alternate viewpoint for the nodes that are present in the IEC. On the
underlying point process @, define new iid marks Z’ € K = {0, 1} with Ber(6%*(), p)) distribution. This means
that a vertex is attributed mark 1, if it is in the IEC when probabilistic forwarding is carried out with forwarding
probability p. Then, the fraction of nodes in the IEC when marks are Z corresponds to the fraction of nodes with mark
1 when marks are Z'. This interpretation will be useful in proposing a heuristic approach for probabilistic forwarding
of multiple packets in Section 8.

6.3. Probabilistic forwarding of multiple packets

Consider now the probabilistic forwarding mechanism on n packets. Each node transmits a newly received packet
with probability p independently of other packets. It is required to find the fraction of successful receivers, the nodes that
receive at least k out of the n packets. From our discussion of probabilistic forwarding of a single packet (in Section 6.1),
for large m, the number of nodes within I}, that receive a packet from the origin is well-approximated by the number of
nodes in the IEC. In a similar way, the fraction of successful receivers within I, can be well approximated by the fraction
of nodes which are present in at least k out of the n IECs when probabilistic forwarding is done on the RGG, G°. In this
subsection, we will use the ergodic theorem and obtain explicit bounds on this fraction.

Equip each vertex of the point process @ with mark Z = (71,25, ...,Z,) € K = {0, 1}". Here the jth co-ordinate of
the mark represents transmission of the jth packet on @. More precisely, Zi(-) ~ Ber(p) and, for two different vertices u
and v, Z(X,) and Z(X,) are independent conditional on @. Therefore, it forms an iid marked point process. Define Cf’;‘ to
be the set of nodes which are present in at least k out of the n IECs. Taking f(z, w) = 1{0 € C,f_";} in the statement of the
ergodic theorem, we obtain

1 m— 00
T DX e ¢} AP0 € 7Y Pas.
Xielm
Denote by O,f"jf()\, p):=P%0 e C,ff‘,f). Then the above statement reads as
] |CeXt NnNr. |
lim % = 1 6%, p) P-as. (12)
m— 00 v(ilm ’

7. Main results

In this section, we obtain expressions for py s and 7, s on the finite graph G based on the framework that has been
developed in the previous section. Theorems 7.6 and 7.7 provide the limiting values of the expected fraction of transmitters
and the expected fraction of successful receivers respectively, which are then used to obtain the estimates for vy , 5 (in
(18)) and p.ns (in (20)). Prior to that, we first address some technical hurdles that arise while mapping the probabilistic
forwarding mechanism on the finite graph to the MPP on R?.

While constructing % (as described in Section 6.1), the graph corresponding to Iy can be taken to be G% (with
additional edges from vertices in Ip o to those outside it). Alternately, G% can be constructed by considering a restriction
of G ~ RGG(A, 1) to I, and connecting the origin to nodes within B1(0). In essence, it is true that the distribution of
nodes of G and g% N Iy, is the same. Recall that the graph G on which the probabilistic forwarding mechanism is carried
out, is the component of the origin in GY. In light of the correspondence between the vertices of G% and G° N I3, the
graph G should correspond to the graph induced on the nodes within 7, that are present in the cluster of the origin
in g% However, these nodes also include those that are contained in the cluster of the origin through paths which go
outside I, but are not connected to the origin within I3, (see Fig. 3). We refer to these as, nodes in the cluster of the
origin but without a I'i,-conduit and denote them by Cy .. The following theorem states that the number of nodes without
Ip-conduits normalized by the area of I3, converges almost surely to 0.

9
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Fig. 3. Circuit in the annulus I7,_1 \ I7.

Theorem 7.1. For A > A,

c
lim Coml _ P-a.s.
m—oo m
As a consequence, we have
Co(G? G(g®nr;
lim (G (Gl — lim 1€(G7) N Il P-a.s.,
m—oo  Am? m— oo am2

where Co(G°) is the set of nodes in the cluster of the origin in G°.

The latter part of the theorem is obtained by noting that Co(¢°) N I}, = Go(GY) U Co.m With Go(G2) N Com = 9.
For the first part, we divide the nodes in Co m into those which are present within a smaller concentric r x r area I, for
r < m, and those in I, \ I} (see Fig. 3). Denote these by

’S\rm:’C\‘OmmP and Arm:/C\Om\TS\rm

respectively. In the followmg two lemmas, we show that for an appropriate value of r, the number of nodes in Sr m and

Tr m normalized by m? converges to 0 almost surely.
Define s, = &, the w1dth of the annulus I3, \ I5. Let us first look at the nodes in Tr m. The following lemma states

that the fraction of nodes of Tr m in a narrow annulus within I, approaches 0 as m — .

Lemma 7.2. For a sequence s,;,; — oo with %’” — 0 .as m — oo, we have

T
lim | r'?l =0 P-a.s.
m—oo m

Proof. The nodes in /T\rm form a subset of the nodes of the underlying Poisson point process ¢ which are within I, \ I5.
Thus, we have,

Toml < (T \ I}) P-a.s. (13)
It suffices now to show that w — 0 as m — oo, which then proves the lemma. We proceed as follows:
O\ L) @I\ I}) m?—r?
m2 T T2 m2
— M . 457’” — ﬁ . (14)
m2 —r? m  m?
Using the ergodic result in (5) with I3, replaced by I3, \ I}, we obtain
DI\ I
M — )\‘ ]P?_a.s‘
m2 — 12

This is because the area of I}, \ I} is m?> — r2. Moreover, since the term within parenthesis in (14) converges to 0, from
the condition in the statement of the lemma, we have that

T, S\ T,
m—oo M2 m—00 m?
=0 P-a.s. O

10
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We next address the nodes in S; ;,,. These are nodes within I but without a I'j,-conduit. We will show that |S; |
converges to 0 almost surely using ideas from Russo-Seymour-Welsh (RSW) theory which is discussed in Appendix B.
For this, let Anny, denote the event of existence of a circuit in the annulus I3, \ I as shown in Fig. 3. Notice that if
|S, m| > 0, then there cannot be such a circuit. This is stated formally in the following lemma.

Lemma 7.3. For A > A, let B, m be the event that there exists at least one point of Co m Within I, without a I'y-conduit
ie., Brm = {|Sr,,,| > 0}. Then Brm gAnn

Proof. The proof proceeds by showing that the events §,,m and Anng, cannot occur simultaneously. For this, suppose
there is a circuit A within I, \ I7. Also, suppose that some point z € @ that lies within I is connected to the origin
only via a path I7 that leaves I3,. Then, IT must physically cross A at least twice as shown in Fig. 3. At any of the locations
where such a crossing happens, consider the two adjacent points, x and y, of @ that are on the path I7, but which fall on
opposite sides of A. Note that, since A is at a distance of at least 1 from the boundary of I3,, both x and y are within I7,.
Also consider the two adjacent points, u and v, of @ that are on A, but which fall on opposite sides of 7. Now, x, u,y, v
form a quadrilateral with diagonals xy and uv having length at most 1. Hence, at least one of the sides of this quadrilateral
has length at most 1. This means that at least one of x and y is within distance 1 of either u or v (or both). Thus, at any
crossing of IT and A, either IT and A intersect at some point of @, or IT is connected by an edge to the circuit A, and
the connecting edge lies entirely within I7,. From this, one can construct a I;;-conduit between z and the origin. O

Corollary 7.4. For A > A, there exists s,, < m such that

m—oo

|Srm| — 0 P-a.s.

Proof. Let ¢ > 0. From the previous lemma and using Proposition B.3, we can write

P([Srm| > €) < P(Anng ) < 8 ( Wexp( CSm). (15)
m Sm
Taking s, = 31°gm and summing over m, we obtain
~ C/ C//
P(|S, < — + — < 0. 16
;ur,mbe)_;mzlog( S+ < (16)

Using the Borel-Cantelli lemma, this shows that |§,m| — 0 as m — oo almost surely. O

Proof of Theorem 7.1. The choice of s, = satisfies the condition of Lemma 7.2 as well. From Lemma 7.2 and

Corollary 7.4, as m tends to infinity, we obtain
Co,m _ |Tr,rn| |Sr,m|
m o om
6logm
C

3logm
c

— 0 P-a.s.,

where r =m — . This proves the theorem. O

Continuing the discussion prior to Theorem 7.1, the fraction of nodes in the component of the origin that are not
connected via I},-conduits approaches 0 as m — oo almost surely. The outcome of Theorem 7.1 is that in the asymptotic
regime as m — oo, as long as we are interested in the fraction of nodes within the component of the origin, it does not
matter whether these are connected to the origin via I';-conduits or not. In other words, the fraction of nodes within
G can be approximated by the fraction of nodes within I, of the component of the origin in G° for a large m. To get a
handle on the fraction of nodes within I, of Co(G®), we will need the following lemma.

Lemma 7.5. Let A = {0 € C(G%)}, where C(G°) is the infinite cluster of G°. For A > A, we then have

Co(c® NI,
lim 1GG)N Ll _ ()1, P-a.s.
m—o00 Am?2
Proof. We can write
1Co(G°) N I ICo(Q")ﬂF | ICo(G")ﬂFmI1 .
am2 Am2 am2 A

Since A° is the event that the origin is in some finite cluster, the number of nodes within Co(G°) is finite. In the limit as
m — oo, the latter term on the RHS above goes to 0. For the first term, notice that A = {Co(G%) = C(G°)}. This gives

|Co(G%) N Il IC(G°) N Il
1, = 1,4
Am? Am?

11
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Further, from (A.1), we have that

- C@N Tl . [C(9) N T
lim = lim P-a.s.
m— oo Am2 m— oo am?2

Therefore, using (8) in the RHS of the above equation, we obtain that

_|Co(6®) N Iy _|C(G%) N Iy

lim ————— 14 = lim ——————1,

m— oo Am? m—00 Am?
=0(M)1, P-as. O

Note: It should be noted here that the statements in Theorem 7.1, Lemmas 7.3 and 7.5 and Corollary 7.4 hold P%-a.s.,
since these are P-a.s. statements made on the underlying graph G°.
Before we proceed, we recall the definition of the minimum forwarding probability in (1):

Rin(G®
pmﬁzm%p‘E[kﬂ’ﬂ}zl—%,

[e(eH]
where the expectation is over the graph as well as the probabilistic forwarding mechanism. Note that in our setting, the
source, 0, always has mark 1 since it transmits all the n packets. To be more explicit, define 1 = (1, 1, ..., 1) to be the

vector of all 1s of length n. We denote by E(®V the expectation with respect to the Palm probability P° given a point at
the origin, conditional on it having mark Z(0) = 1. In terms of this, the above equation translates to

. (0,1) Rk,n(Gm) _
pk,n,s—mf{p | E [|co(cm)| >1-5}. (17)

Next, since we are addressing a broadcast problem, it is necessary that a large fraction of nodes receive a packet. This,
in turn necessitates that the fraction of nodes that transmit the packet is also large. With reference to the RGG on the
whole plane, this means that the nodes in G* need to have an infinite cluster. To allow for this, we make the following
assumption.

Assumption 1. The forwarding probability p is such that Ap > A..

Notice that the py p s values obtained from simulations in Fig. 1 conform to this assumption. The assumption is discussed
in slightly more detail in Section 9.1. We now obtain expressions for the minimum forwarding probability and the
expected total number of transmissions based on these two assumptions.

7.1. Transmissions

Consider first the transmission of a single packet. Let T(G,,,) be the number of nodes of G,; that receive the packet from
the source and transmit it and let 7(G) N I3, be the set of nodes within I3, that receive the packet from the source and
transmit it when probabilistic forwarding is carried out on G.2 From our construction, it follows that T(G,,) is stochastically
dominated by |7(G) N I,| since there might be nodes which receive a packet from outside I}, and transmit it. However,
it can be shown that,

_ EOV[T(Gp)] _ EOV[IT(9) N Tyl]
lim ———— = lim .

m— oo m2 m— oo m2

This is because the exPected fraction of transmitting nodes with no I},;,-conduits diminishes as m — oo. Thus, it suffices
to evaluate limy,_, o W to find the expected number of transmissions for a single packet.

In the jargon of marked point processes, 7(G) is the set of vertices with mark Z(-) = 1 that are in the cluster containing
the origin. Note that the origin has mark 1, since it always transmits the packet. As the vertices with mark 1 form a thinned
point process, @ of intensity Ap, 7(G) is the set of nodes in the cluster containing the origin in G*. In Section 6.1, we
denoted this set by C&“. From Assumption 1, the graph on @7 is in the super-critical regime and thus possesses a unique
infinite cluster, C*. The following theorem provides the expected size of Co+ N I3,. The proof proceeds by relating it to the
expected size of C* N I, and using the ergodic result in (10).

Theorem 7.6. For Ap > A, we have

CF Nl
lim RO |:|02m|j| =pO(rp).
m— o0 Am

2 qtis implicit from the use of Palm probabilities that the origin is the source and probabilistic forwarding is formulated as an MPP as described
in Section 6.1.

12
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Proof. Denote by C*, the unique infinite cluster of the thinned process @*. Define the event AT = {0 € CT} =
{B1(0) N CT # ¥} N {Z(0) = 1}. Using Lemma 7.5 for the thinned process @ of intensity Ap, we obtain
¢ nr -
1€ O Ful - oo O(Ap)L{A) P-a.s.
Apm?
From the note following Lemma 7.5 and using DCT, the expected values with respect to P° also converge giving,

cFnr
lim E° ['“’“'] = O(p)P’(AT) =po(rp),
m— o0 am?2

where the last equality uses the definition of A*, PO(A*) = P°(B;(0) N CT # ) P°(Z(0) = 1) = pf(Ap), and we have also
used that {B;(0) N C*™ # ¥} and {Z(0) = 1} are independent events with respect to P®. The proof is complete by noting
that if Z(0) = 0, then C;” = ¢ and so

50 G N Il _ PEOD ICy N Tl
Am? Am? '
Therefore, for large values of m, the expected number of transmissions, E®! [T(G,)], can be approximated by
ECV[ICS N Iwl] ~ m*Ap 6(p).

Consider now the transmission of multiple packets. The n coded packets are transmitted independently of each other.
The expected total number of transmissions of all n packets would just be n times the expected transmissions of a single
packet. Therefore, from Theorem 7.6, we then obtain

2
Tems ~ MM APins (0(APrns)) (18)
7.2. Minimum forwarding probability

In this section, we will obtain an expression for the minimum forwarding probability. Recall that this entails estimating

EOD Tgﬂ’zgﬂm)l)] where Co(Gy,) is the set of nodes in the component of the origin in the underlying RGG on I, and Ry ,(G)
are the number of nodes that receive at least k out of the n packets from the origin, which is the source. From Theorem 7.1,
Co(Gm) can be viewed as the set of nodes in the component of the origin in G° restricted to I}, but with only those nodes

which are connected to the origin via I'p-conduits. Ri 5(Gp,) is the number of nodes among those in Co(Gr,), which are

Rk,n(Gm) . 0 :
1CoCm)l ] with respect to the RGG, G°, instead

successful receivers. These arguments lets us think of the expectation E®V [

of the finite RGG, G2,

Since we are interested in large networks, it is natural to assume that the origin is part of the infinite cluster of g°.
This means that the cluster of the origin in G% connects to the infinite cluster in ° when G2, is embedded within it. In
other words, the event A = {0 € C(G°)} occurs. The results of this section are made with this assumption, which is stated
below explicitly. Additional justification for this is provided in Section 9.1.

Assumption 2. The origin is part of the infinite cluster of g°.

From the discussion above and the assumption, our interest now is to estimate Ef‘o") [TC"OTE(GGW’SI)] The subscript A in the
(0,

expectation E, Y indicates conditional expectation given that the event A occurs. From Assumption 1, it is clear that such
a conditioning can indeed be done, since P(A) = 6()1) > 0.

The following theorem gives the expected value of the fraction of successful receivers in the limit as m — oo
given the event A. Before we state the theorem, recall the formulation of probabilistic forwarding as a marked point
process in Section 6. C,f’;t was defined as the set of nodes which are present in at least k out of the n IECs and let
6% = 6 (x,p) = PY0 e CX). Additionally, define A7} to be the event that the origin is present only in the IECs
corresponding to the packets 1,2, ...,t.

Theorem 7.7. For Ap > A, we have

Ri.n(Gm) 1 (n
lim E(0,1)|: k,nlGm ] — ( >9ext ]Py(o,l)(Aext).
mooo A 1Co(Gm) O(A)2 ; ¢ )kt [t]

The proof is on similar lines as that on the grid in [7]. It relies on carefully relating the fraction of successful receivers
on G to the fraction of nodes present in at least k out of the n IECs corresponding to probabilistic forwarding on G°. A
step-by-step proof is given in Appendix C.

The following proposition is used to express PD(A®) in terms of 6%

13



B.R. Vinay Kumar, N. Kashyap and D. Yogeshwaran Performance Evaluation 160 (2023) 102343

11.0

10.0 4

" from simulations A = 4 —+— from simulations A = 4.5 ./".
\ —®- using (18) with py, s from Fig. 1(a) ". —@- using (18) with py, s from Fig. 1(a)
1051 |\ - 9.54 =~
\ g ‘ ’
\ .4
Q 2¥
10.0 - 9.0
) &
»
.\\ ~
9.5 [ "%k 8.5
200 225 250 27.5 300 32.5 350 37.5 40.0 200 225 250 275 300 325 350 37.5 400
Number of coded packets (n) Number of coded packets (n)
(a) RGG(4,1) (b) RGG(4.5,1)

Fig. 4. Comparison of the expected number of transmissions per node on Iy; obtained using (18) with that obtained through simulations. Note
that the py s value for each point on both the curves in each plot are from the simulations in Fig. 1(a).

Proposition 7.8.

ext ext
fin —Oin g _p <n_y

() (19)

ext —
o t=n.

PO (a5f) =

Proof. The second part follows directly from the definitions of G,ff‘,f and the event Ae,?,“. For the first part, define for T C [n],
A$ to be the event that the origin is present in exactly the IECs indexed by T. Note that

9[?:: — 0 1) 0 c Cext Z Z IP(O 1) Aext)

j=k T<n]
IT|=j

Since the event A$* depends only on the cardinality j (see Step 7 in Appendix C), we obtain
n
Y\ 0.1
=3 (oo
j=k
We then have that 2% — 67%, | = (7)POV(A%) for 0 < t < n — 1, which is the statement of the proposition. [

We remark here that the statement of Theorem 7.7 can be used to obtain an estimate for the expected fraction of
successful receivers without the conditioning on the event A. We write

R n(Gm) Rk n(Gm) Rkn(Gm)
gOD | ZkmZml } = () EOY [ } 1—6(r ]E"c‘)[ }
[lco(cmn SRR rovres il IS G TR o

Notice from Fig. 2 that 6(1) shows a phase transition phenomenon. For the intensities we are interested in, P(A°) = 1—6(A)

is very small and the latter term in the above equation can be neglected. This also suggests that Assumption 2 is not a
very strong requirement.

Consequently, for large m, using Theorem 7.7 and Proposition 7.8 in (17) yields an approximation for the minimum
forwarding probability given by,

n—1 eext(gext _ pext ) pextgext }
>1-6

k.t t+1,n k,nYn,n
>
Lo m e

t=k

Dk;n.s =~ il’lf{ (20)

7.3. Comparison with simulations

We have not been able to obtain exact expressions for the probability 9,5”?()», p) in terms of the percolation probability
6(1). However, in Section 9.4, we provide some bounds for it. We also develop an alternate heuristic approach, which
provides comparable results for the minimum forwarding probability obtained through simulations, in Section 8.

Nevertheless, the approximation for the expected total number of transmissions, tx ns in (18) can be evaluated with
the knowledge of the minimum forwarding probability. In Fig. 4, we show the plot of 7, , 5 normalized by Am? with n in
which we use py s values from Fig. 1(a)

It is observed that for n < 26, both the curves match pretty well. However, for n > 26 they diverge. This can be
attributed to the fact that as n increases, py s decreases as in Fig. 1(a) and thus Apxns . Ac. The estimate for the
percolation probability, 8()), obtained via the ergodic result in (9) may not be accurate near the critical intensity, A

(which is itself not exactly known). In particular, I55; may not be large enough for the ergodic result in (9) to kick in, as
we approach A..

14
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Nevertheless, this provides justification to our observation that the expected number of transmissions indeed decreases
when we introduce coded packets along with probabilistic forwarding. This comes with a catch that the minimum
forwarding probability for a near-broadcast behaves as in Fig. 1(a). In order to establish this, we provide a heuristic
explanation in the next section.

8. Heuristic estimates for the minimum forwarding probability and the optimal number of coded packets

The minimum forwarding probability is expressed in terms of the probability 6, , in (20). This section provides heuristic
estimates for the probability 6y ,, which, in turn, is used to obtain approximations for p ns. Additionally, a graphical
procedure to obtain the optimal number of coded packets using these heuristic estimates is also outlined. For rigorous
bounds on 6 ,, we refer the reader to Section 9.4.

In the marked point process formulation, probabilistic forwarding of multiple packets was modelled using marks given
by Z = (71, Z5, ..., Z;) with Z; ~ Ber(p) conditional on the underlying point process @. We refer to this as the original
model. Motivated by the alternate interpretation for the nodes in the IEC expounded at the end of Section 6.2, in this
section we provide a heuristic approach for evaluating the minimum forwarding probability.

As before, let 9¢X(, p) denote the probability that the origin is in the IEC for a single packet transmission. Associate a
new mark Z' = (21,7}, ...,Z;) € K = {0, 1}" to each vertex of ®. The ith co-ordinate of Z’' corresponds to probabilistic
forwarding of the ith packet. The mark Z’' is chosen such that each of the i co-ordinates is either 1 with probability
0%X(x, p) (= O(Ap)) or 0 with the remaining probability, independent of the others. Similar to the viewpoint for the single
packet transmission, our idea is to use Z/ as a proxy for a vertex to be present in the IEC in probabilistic forwarding of
the i—th packet. We refer to this as the mean-field model.

There are two key differences between the two models defined here. Firstly, in the original model, presence of a node
in the IEC is not independent of other nodes being present in the IEC. Whereas, in the mean-field model, Z/(u) and Z/(v)
are chosen to be independent Ber(6(Ap)) random variables for two distinct vertices w and v. Since Z/ is interpreted as
an indicator whether a vertex is present in the ith IEC, this independence is enforced, conditional on &. Secondly, in the
original model, presence of a particular node in IECs corresponding to two different packets, are not independent. They
are independent conditional on @ but not otherwise. In the mean-field model, since Z(v) and Z]((v) are taken to be iid,
this dependence is over-looked.

To analyse the mean-field model, let us use the ergodic theorem (2) with

n
Loy=Y Y Tl ]a -2
j=k TCIn] ieT  i¢T
ITI=j
The inner summation is 1 only if a node has mark 1 in exactly the co-ordinates indexed by T (which has cardinality j).
Since the outer sum goes over all j > k, the value of the function is 1 for a vertex which has mark 1, in at least k out of
the n co-ordinates. From our interpretation of Z/, the value of the function, f, for a vertex is equal to 1 if it is present in
at least k out of the n IECs of the original model. Define Ck o to be the set of nodes which have mark Z/(-) = 1 in at least
k out of the n packet transmissions in the mean-field model. Here, C,Q acts as a proxy for C,f’jf Smce f(Z(v),w) = 1if
v € (., we can apply Theorem (2), to obtain for P almost surely

1
T > aXied,)

Xielm
n
= Y =2 | Y Y [[2] o -
z/e{0,1}" j=k T‘C‘[j ieT i¢T
93D DD DTN 9 ) ()
j=k Tl ze(0,1)" ieT gl
For a fixed j and a set T with |T| = j, there is exactly one z' such that [],_; Z| ]_[W = 1 and the probability of such

az is given by P(Z' = Z') = 6\, p) x (1 — 64, p))"~. Thus, the expression above reduces to
|C]i» N Fm m»oo

V( Z Z eext A, p)’ ext( )nfj

j=k T<In]
ITI=j

=1 Z ( >9e"t (A, pY(1 — 6, p))*~ P-as.
Jj=k
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Fig. 5. Comparison of simulation results with results obtained via (21) and (18) on RGG(4.5, 1) (top) and RGG(4, 1) (bottom) on Io; with k = 20
packets and § = 0.1.

Define

n

Opn = 0ia0P) =) (?)mwu —0(p))" .
j=k

From our interpretation of C; , as representing C¢*' of the original model, we use 6, , instead of 6% in (20), and after

a series of manipulations, the minimum forwarding brobability obtained via this heuristic approach, pi,n, s» would be the
minimum probability p such that

1 & (0 /[t 4 .
6(x) 22 (r) (J')e(m[ﬂ“ —o0p) T =15

t=k j=k

This expression is similar to the expression that was obtained for the case of a grid in [7]. Using [7, Prop. VL.11], we
then have

P(Y > k
Py = inf{ P ‘ % > 1 —5} 1)

where Y ~ Bin(n, (6(Ap))?).

The p} , s values obtained using this expression is compared alongside the simulation results in Figs. 5(a) (A = 4.5) and
5(c) (A = 4). The expected total number of transmissions obtained via (18) is plotted in Figs. 5(b) and 5(d) respectively.
The simulation setup is the same as described in Section 4.

It is observed that the curve for the minimum forwarding probability obtained via our analysis tracks the simulation
curve pretty well. However, the curve for the expected total number of transmissions deviates from the simulation results
substantially for larger values of n. This can be attributed to the drastic change in 8()) around the critical intensity A.. Even
though there seems to be a minor difference in the forwarding probability of the original and the mean-field model, the
behaviour of the percolation probability around A, creates a huge divide between the two transmission plots in Fig. 5(b).
This behaviour is similar to what was obtained on the grid in [7]. Nevertheless, note that the i , s curve initially decreases
to a minimum and then gradually increases with n (albeit very slowly). This shows that probabilistic forwarding with
coding is indeed beneficial on RGGs in terms of the number of transmissions required for a near-broadcast.

From a practical viewpoint, this heuristic can be used to obtain the optimal values of the minimum forwarding
probability and the number of coded packets required for a near-broadcast. The expression for pj , , in (21) provides an
easy and relatively accurate way (as seen in Figs. 5(a) and 5(c)) to graph the curve for the optimal forwarding probability
for given values of k and 8. This could then be used to choose the value of n for encoding the k data packets so as to have
a near-broadcast with the least number of transmissions. A heuristic way to go about this would be to use the smallest
n corresponding to the point on the p; , ; curve where the (discrete) gradient between successive points does not vary
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Fig. 6. Comparison of simulation results with heuristics shown in Fig. 5 but with additional correction for the probabilities. The probabilities in
Figs. 5(a) and 5(c) were scaled by 1.0189 and 1.032 to obtain the curves corresponding to the heuristics in (a) and (c). Eq. (18) was then used to

generate the green curves in (b) and (d). (For interpretation of the references to colour in this figure caption, the reader is referred to the webversion
of this article.)

significantly.? In Fig. 5(a), this corresponds to the point n &~ 26. This point is expected to give the best result for the
following two reasons:

e When operating with a lesser value of n (< 26), it is possible to introduce more coded packets so that the effect of
the decrease in pj , , from Fig. 5(a) overshadows the increase in the number of transmissions brought about by the
introduction of the extra packets.

e With additional coded packets (n > 26), the number of transmissions increases owing to the forwarding probability
not decreasing significantly.

In this way, a judicious choice can be made for n and the forwarding probability pi n s at which to operate the scheme.
We now provide an alternate methodology to deduce the optimal number of coded packets motivated from our
numerical results. It is evident from Fig. 4 that the deviation of the two curves in Figs. 5(b) and 5(d) in predominantly
due to the minor difference between the corresponding minimum probability curves in Figs. 5(a) and 5(c). With this
insight, we scale the curves obtained via the heuristics in Fig. 5(a) and 5(c) by a factor equal to the ratio of the minimum
forwarding probabilities from the simulations and heuristics averaged over all n from 20 to 40. The plots accounting

for this correction are provided in Fig. 6 . It can be seen that the corrected curves track the simulations well, and can
additionally recover the optimal number of coded packets.

9. Discussion

9.1. A note on our assumptions

In this subsection, we provide some justifications for the assumptions made in our analysis. Our interest in this paper is
to broadcast information on large networks. A basic requirement for this is that a large number of nodes in the network
must be reachable from the origin. In the sub-critical regime, i.e. A < A, ~ 1.44, the clusters are finite and small. To
model large ad-hoc networks, we need the graph to be connected on a large area I3,. This necessitates A to be in the
super-critical regime and the component of the origin within I3, to be large. In the limit as m — oo, this requires that
the origin be present in the infinite cluster of the underlying RGG, thus justifying Assumption 2.

Further, notice that for a near-broadcast, we need the expected fraction of successful receivers to be close to 1,

0
ie., E? LW > 1 — § for some small § > 0 (The denominator here is the expected number of nodes within
Iy of t

e infinite cluster C.). If we would like this to hold for sufficiently large m, then the forwarding probability must
be such that Ry ,(¢°) has infinite cardinality. This implies that p must be such that there is an IEC during probabilistic

forwarding on G°. Now, since existence of an IEC implies existence of an infinite cluster, the p value must ensure presence
of an infinite cluster. Thus Ap > A.. This justifies Assumption 1.

3 This is referred to as the “elbow method” in the clustering literature.
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It can also be seen from the simulation results in Fig. 1 that t; , s is minimized when the forwarding probability is
such that Apxns > Ac OF prns > 0.32. Further, results obtained from our heuristic approach in Fig. 5 also suggest that
the expected total number of transmissions is indeed minimized when operating in the super-critical regime.

9.2. Communication aspects

In this subsection, we consider some of the issues involved in the practical implementation of the proposed proba-
bilistic forwarding algorithm with coded packets. With numerous packets traversing the network, packet collisions are
bound to happen. These interference effects need to be handled. Moreover, the channel between adjacent nodes could be
error prone resulting in a transmission being lost. Such channel outages need to be addressed as well.

When there are multiple packets in the network, interference effects can be avoided by separating the transmissions
either in the frequency domain or in the time domain.

o In the frequency domain, a possible solution is for nodes to transmit on orthogonal sub-carriers of an Orthogonal Fre-
quency Division Multiplexing (OFDM) signal. Alternately, each packet could be transmitted on a different orthogonal
sub-carrier. The latter scheme, however, limits the number of packets that can be transmitted concurrently.

e In the time domain, a scheduling algorithm has to be implemented to avoid concurrent transmissions which might
interfere. A schedule must not have a pair of nodes that are within two hops from each other in the same slot.

From a graph-theoretic perspective, both these solutions can be viewed as vertex-colouring problems on the underlying
graph G = (V, E). The problem of broadcast scheduling captures this from a graph-colouring setting and has a vast literature
(see e.g., [51,52]). Once a vertex-colouring is obtained, it can be used to implement the above strategies by associating
a colour with a particular sub-carrier frequency band or a particular time slot as required. These assignments could be
done during the time of network deployment with an associated one-time cost.

When links between adjacent nodes are not ideal noiseless links, the broadcast information received could be distorted.
Knowledge of the channel state information (CSI) could be used to further regulate the forwarding probability at every
node to overcome channel outages. Each link could be modelled to be either in a ‘good’ or a ‘bad’ state based on CSI
statistics. The problem then reduces to carrying out the probabilistic forwarding mechanism on a random subgraph of
the original network. This involves modelling the process as a joint site-bond percolation on the underlying graph. The
techniques necessary to analyse this scenario are more sophisticated than those used in this work, and form a possible
future research direction.

9.3. Optimization framework

Our treatment of the problem has shown that on RGGs in the connectivity regime, there exists an optimal value of the
number of coded packets n* and a corresponding forwarding probability p* that minimizes the expected total number of
transmissions while ensuring that the fraction of successful receivers is close to 1. However, our analysis does not provide
a way to obtain these optimal values. In the following, we formally state the relevant optimization problem and comment
on the same.

As before, let G be the component of the origin in an RGG generated on I}, of intensity A. Denote by N the total
number of nodes in G and let T; be the number of transmissions of packet i, for i € [n]. Recall that R, was the number
of successful receivers within G. For fixed k and §, our interest is to find

n
n*,p*) = argmin E T;
(n*, p") gmin {; ]

R (22)
subject to IEI|: Ilil’" ] >1-39,

neN, pe[0,1].

In this work, we have analysed the above problem when the size of the area on which the RGG is deployed, I7,, goes
to infinity. We obtain analytical expressions for E[T;] and E lev—'" in terms of the percolation probability of the RGG as
m — oo. To be more precise, denote the successful receivers by Ry ,(G%). Using a coupling argument as in the proof of

Rin+1(GR) Rin(GR) . . :
Lemma 4.1(a), we have that E [%] >E [Tm] Taking the limit as m — oo, we obtain

lim E[R"’”“(G?")] > lim E [R"’”(Ggq)]. (23)
N N

m—o0 m—00
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Followmg similar arguments as in obtaining (20) from Theorem 7.7, the limit on the RHS above is given by

0, ext —pext extpext

P 0 ) )
e ki in ~0in) + "9”(;;" and the limit on the LHS is the same expression with n replaced by n + 1. If we now

0
define for f1)2ed n, k and 8,

t

(23) shows that {P,, n > 0} is a non-decreasing sequence of sets and therefore p(n) decreases monotonically as n — oo.
Using this along with the observation that the expression for the expected total number of transmissions in (18) is an
increasing function of the forwarding probability, we obtain that,

n—1
Qext(gext gte_);tl “) elf)ggext
>1-35} and p(n) 2 infP,, 24
> ey +=50) = and p(n) £ inf P, (24)

t=k

[I>

P

n* = argmi;l nip(n) B(Ap(n)))> and p* = p(n*) asm — oo, (25)
n>k

In the following, we discuss two variations of the above problem:

o Fixed forwarding probability p = p, : If po > pi ks, then introducing coded packets does not provide any benefit
in terms of the expected total number of transmissions. However if pg < pi ks, since {P,, n > k} forms an increasing
sequence of sets, there exists a minimum value of n = ngy after which py € P, for all n > ng. This ny is therefore the
optimal number of coded packets for the fixed probability po.

o Fixed number of coded packets n = ny, > k: Here again, owing to the sequence p(n) decreasing to 0 from
Lemma 4.1, there exists a unique probability po = p(ng) given by (20).

In both these scenarios, obtaining a closed form expression for the unknown ng or py would require an analytical
characterization of the probabilities 9,?’;‘ and O()) appearing in (24). This remains true even if the optimal values are
provided, i.e., even if either py = p* or np = n* is given. Some bounds on 9;’,‘} are provided in the next subsection and
obtaining expressions for 8()) is an open problem (even on deterministic graphs such as grids). Nevertheless, the heuristic
approach presented in Section 8 can be used to obtain the optimal quantities in both the above scenarios, or to solve the

optimization problem in (22) directly. A further discussion on this appears in Section 10.

9.4. Bounds on Qlf’jf

We give two lower bounds for 6;(%, p). The probability 6% (x, p) can be expressed in terms of the events A" as
follows.

0% (0, p) = IP’O( U A‘;“> =Y PUAR)

|T|>k [T|=k

A simple lower bound for QEX‘(A p) can be obtained by taking the term corresponding to T = [n] in the above summation.

0%(%, p) = PUATY) = (ﬂ{o e 7 )
(@
> HIP’" (0 ec)

i=1
=P°(0 e

Here, the inequality in (a) is via the FKG inequality since the events {0 € Cf*'} are increasing events. This gives

Oen(x, p) = 6(Ap)". (26)

k,n

Note that this, along with Assumption 1, suffices to ensure that our analysis yields non-trivial results for all values of k
and n.

We now provide a second bound. For this, recall the iid marked point process @ equipped with the mark structure
Z. Define a new marked point process ®r with the underlying point process @ and marks Zr = [[;.;Z 1_[;¢T(1 - Z).
The points with mark 1 in &7, form a thinned version of @ where each vertex is retained with probabllity P(Zr =
110)=PZ =1{ie T}, ie[n]|®)=pTl(1—p)"Tl. Thus @ is an iid marked point process with Ber(p'"!(1 — p)*~IT
marks.

Let C®**(®7) denote the IEC of &r. Notice that

Joec™en ctoecyy.
ITI=k
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The probability of the event in the LHS above can be found as

PO U {0 (S CEXt(d)T)} = 1 — ]P)o ﬂ {0 ¢ CeXt((PT)}
|T|=k Tk
=TT 0% pla = pr )
j=k
Therefore, the probability 9,5_’;{( A, p) can be bounded as
n
6240 p) = 1= [ (1 = 00p(1 — pyr) Y o

j=k
10. Future work

In this section, we collect some of the questions arising in this work that could lead to possible future research
directions. These encompass problems arising from our analysis, numerical experiments, algorithm variants and practical
implementation.

1. Probabilistic forwarding of n packets on the RGG gave rise to the term 6% = PY(0 € C&) in the expression for the
expected fraction of successful receivers. While some bounds were obtained for this in Section 9.4, an analytical
expression for 9,2’,? in terms of %*(A, p) (which was the probability that the origin belongs to the IEC for site
percolation on the RGG), would be useful in obtaining better estimates of py » s and ti » s. Perhaps, a simpler problem
is to find the probability P?(0 e C,:fn). In terms of the marked point process formulation, for a point process ®° with
independent marks Z = (Zy, Z, ..., Z,) where Z; ~ Ber(p), this is the probability that the origin is present in at
least k out of the n infinite clusters. Each Z; corresponds to a site percolation process on the underlying realization
of the RGG. Conditional on the underlying RGG (or equivalently, @), the events corresponding to the presence of
the origin in the infinite cluster of the ith and the jth percolation processes are independent. However, this is not
true unconditionally. Intuitively, it is expected that the presence of the origin in the ith infinite cluster makes it
more likely for it to be present in the jth infinite cluster as well. A mathematically rigorous understanding of this
phenomenon is necessary.

2. Concerning the optimization framework developed in Section 9.3, it was indicated that the heuristics presented
in Section 8 can be employed to obtain the optimal values of the number of coded packets and the forwarding
probability. This assumed that the estimates for the probabilities O,f’;f and 6(A) obtained numerically using the
ergodic theorems (9) and (12) well-approximated the actual values in the limit as m — oo. Naturally, a second-
moment characterization of the fraction of successful receivers and the expected total number of transmissions
in the asymptotic regime will provide better indication of the validity of these estimates. Alternately, one could
consider solving the optimization problem stated in (22) for a fixed m using other methodologies. We believe the
techniques required for these approaches are more sophisticated and span an interesting future direction for this
line of work.

3. The assumption that the random geometric graph operates in the super-critical region is inherent in our analysis.
In fact, as discussed in Section 9.1, most of our results require Ap > A.. However, as shown in Lemma 4.1(b), the
forwarding probability diminishes to 0 as n — oo. Thus, for large n, the thinned RGG of intensity Ap consisting
of only the transmitters operates in the sub-critical regime (Ap < A¢). A comprehensive study of the probabilistic
forwarding mechanism in the sub-critical regime will help provide an overall understanding of the problem. In
particular, this might provide further insight into the deviation of our heuristics from the observed simulations in
Figs. 5(b) and 5(d).

4, The probabilistic forwarding mechanism with coded packets is a completely decentralized and distributed al-
gorithm. This makes it amenable to be deployed on mobile ad-hoc networks (MANETSs) or vehicular networks
(VANETs) where the individual nodes are moving. Moreover, simulation studies indicate that mobility improves
connectivity in such networks (see e.g., [53-56]). Additionally, other metrics of performance can be incorporated
in this scenario such as delay [57-59], age of information (Aol) [60,61], percolation and connection times [62] etc.
Thus, an interesting future direction is to investigate the performance of the probabilistic forwarding mechanism
with coded packets on MANETSs considering these metrics as well.

5. As an extension of the techniques presented here, one could consider each communication link between nodes to
be noisy. Then, even though a node might forward a packet with probability p, it will be received only by a subset
of its neighbours depending on the packet drop probability, q, induced by the noisy channel. This can be modelled
as simultaneous bond and site percolation on the underlying graph, a process that does not seem to have received
much attention on random graphs.
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Appendix A. Palm expectations of infinite cluster densities

In this section, we prove three main propositions which are used in the analysis of the probabilistic forwarding protocol.
Let G ~ RGG(X, 1) be a random geometric graph on R? defined on some probability space (§2, 7, P). The underlying
Poisson point process, @, is of intensity A. The intensity A is such that we operate in the super-critical region, i.e., A > A.
Let C = C(®) be the unique infinite cluster in G. Let ®® = & U {0} denote the Palm version of @ and let C(®°) be the
infinite cluster in it. Denote by P?, the Palm probability of the origin and E°, the expectation with respect to P°. We now
show that the limiting fraction of vertices in C within I}, remains the same with respect to both E and E°.

Proposition A.1.

lim E° [|cmrm|] = lim E['Cﬁrm|:|
=

m— 00 m m— o0 m2

Proof. Let Cy, C,, ..., Cx be finite components in G which intersect the ball of radius 1 centred at the origin, i.e., G; N
B1(0) # ¥, Vie({1,2,...,K}. Since vertices from distinct finite components C; and Cj, should be at least at a distance
of 1 from each other, the number of such components is bounded. In particular, K is a random variable with K < 7 a.s.
The infinite clusters in the RGG(®°, 1) and RGG(®, 1) models can be related in the following way:

C(@)UCiU---U CcUfo} ifCNBi(0)#9

C(@) ifCNB1(0)=¢

Using this, we can write

C(@% = {

K

|G N Il
D HCNBi(0) £ 0}

i=1

IC(@°) N Tl 1C(@) N Tl
m2 - m2 +

Since K <7as.and |G| <ocoforalli=1,2,...,K, we have
K
GnNI, N
S GO ey by,
m
i=1
Thus, we deduce that
cehnr c@)NTr,
lim 1@ Tl _ lim 16(@)0 Ll P-a.s. (A1)

m— 00 m2 m— 00 m2

Since the random variables involved are bounded by 1, applying the dominated convergence theorem (DCT) gives the
desired result. O
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Corollary A.2.
cCNI;
lim E° [SIAEL1Y 0N
m— 00 m2

Proof. This directly follows from the previous proposition and (8). O

Next, consider the formulation of the marked point process described in Section 6. Let C®*t = C®Y(®) be the infinite
extended cluster (IEC). We now show an analogue of the previous proposition for C*t,

Proposition A.3.

lim E° [|Ce’“ﬂl"m|:| — lim E ['me]

m— 00 m2 m— 00 m2

Proof. The proof is along the same lines as that in Proposition A.1. Let Cy, Gy, ..., Cx be finite components in G* which
intersect the ball of radius 1 centred at the origin, i.e.,, GG N B1(0) # @, Vi e {1,2,...,K}. Here again K < 7 a.s. Now,
suppose that C* NB;(0) # ¢, then regardless of the mark of the origin, it is true that C**'(@%) C C*Y(@)UCU---U C*
(with equality being true when the origin has mark 1). If on the other hand C* N By(0) = @, then C®*Y(®%) = C™Y(®).
Using this, we can write

K

ICEXC A Iy
+ ) 'Tm 1{CT N B1(0) # 7).
i=1

|CY(PO)N | [C*Y(D) N Ty
m2 = m?

Note that, if G; is a finite cluster, then so is C** and hence the summation on the RHS above tends to 0 as m — oo. Since
we trivially have that

C™(@) N Tl _ [C™(@°) 0 [

’

m? m2

0
in the limit of large m, the fraction M;w is sandwiched between the two limits yielding
L@ T CN(@)N T
m—oo m2 - m—oo m2

Using DCT gives the statement of the proposition. O

P-a.s.

A similar argument extends to C&*

n as well, which is stated in the following proposition.

Proposition A.4.

lim E? [W}

5 = lim E
m— oo m

m—o0

[|C§ﬁﬂfm|}

m2

Proof. Firstly, note that
ICE(@O) N Tl IGER(®) N Tl
> .

k,n k,n

- > - (A2)
The nodes in CZ(®°) can be related to those in G¢%(@) in the following way. Let C;", C;", ..., G} denote the infinite
clusters corresponding to each of the n packets and let Ci1, G2, ..., Gy, denote the finite clusters corresponding to the

i—th packet which intersect the ball of radius 1 at the origin. Here again, K; < 7 a.s. for all i. Proceeding with similar
reasoning as that of Proposition A.3, we can obtain

b |G |

< D DED Dl (A3)
m i€[n] j: m
c;F B (0)20

IGEM@O) N Tl _ ICGE(@) N T SN Iy
m2
1

The summation on the RHS is a finite sum with at most 7n terms with each term consisting of fraction of nodes in some
.. . .. . . . . cextp0nm,| . .
finite cluster. By taking limits as m — oo, this fraction vanishes. Therefore the fraction W is sandwiched between
the two limits in (A.2) and (A.3) yielding
IG@N Ty ICGEH(®) N Tl
lim ———— = lim ———
m— 00 m2 m— 00 m2

Using DCT gives the statement of the proposition. O

P-a.s.
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Fig. B.7. Left-right crossing in the s, x m rectangular box B through the events LR; and TB;.

Appendix B. Estimates on some crossing probabilities

Let ® be a homogeneous Poisson point process of intensity A > A. on the whole R? plane. On a box By, = [0, b]x [0, a],
a left-right crossing of B, is defined as a sequence of vertices {X;,i = 1,2,...,s}, such that* ||X; — Xi_1]] < 1 for
i=2,3,...,sand ||[X; —x|| < 1and ||X; —y|| < 1 for some x € {0} x [0,a] and y € {b} x [0, a]. A top-bottom
crossing is defined similarly but with x € [0, b] x {0} and y € [0, b] x {a}. If a = b, we simply denote the square box by
By.

Define LR(a) to be the event that there is a left right crossing in a rectangular box R, = B, 2, = [0, 2a] x [0, a]. The
probability of LR(a) in the super-critical region is exponentially close to 1 as formalized in [45, Lemma 10.5]. We reproduce
the same here.

Lemma B.1. For A > A, there exists ¢ > 0 and a; > 0 such that 1 — P(LR(a)) < exp(—ca) for all a > a;.

We will use this lemma to obtain the probability of a left-right crossing in a s,, x m rectangular box, where s,;, << m. Let
CR be the event that there is a left-right crossing of the box B = [0, m] x [0, s;;]. We then have the following proposition.

Proposition B.2. For A > A, there exists ¢ > 0 and a; > 0 such that 1 —P(CR) < 2 ’V%-I exp(—csm) for all sp, > ay.

Proof. Denote ¢ = % .Let B = [(i—1)sm, iSm] x [0, sm] fori e {1,2,..., €} and let R; = BjUBj;  forj e {1,2,...,£—1}
(see Fig. B.7). Define LR; to be the event that there is a left-right crossing in R; and let TB; be the event that there is a
top-bottom crossing of B;. Notice that

£ -1
CRD ﬂ TB; N ﬂLR-,
i=1 j=1

which gives
14 -1
P(CR®) < > P(TB}) + Y P(LRY).
i=1 j=1
The probability of there being no left-right crossings in the rectangles R;, for j € {1,2,..., £ — 1}, are identical (due
to translation invariance) and hence the latter term in the above expression can be replaced by (¢ — 1)P(LRS). For the
first term, note that absence of a top-bottom crossing of B; implies that there is no top-bottom crossing in the rectangle
R = [(i — 1), ism] X [0, 2s,]. But a top-bottom crossing in R; is the same as a left-right crossing in R; (say), since the
underlying homogeneous Poisson point process @ is isotropic. This gives
P(CR®) < (2¢ — 1)P(LRS),
which from Lemma B.1 gives the statement of the proposition. O
Next, we apply Proposition B.2 to the four rectangles surrounding I as depicted in Fig. B.8 . Let CR; for d € {n, s, e, w}
be the event denoting the existence of crossings inside the four rectangles and let Ann,, be the event that there is a

circuit in the annulus I',_1 \ I} as shown in Fig. B.8. Since the presence of crossings in the four rectangles ensures the
occurrence of Anny,,, we obtain

P(Anng ) <P (U CRE) ,
d

4 Here || - || is the L? norm.
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Fig. B.8. Circuit formed by the four left-right crossings LRy, d € {n, s, e, w}.

< D P(CRY),
d

8 ’7 m -‘ exp(—csp).
Sm

We state this formally in the following proposition.

IA

Proposition B.3. For A > A, there exists ¢ > 0 and a; > 0 such that 1 — P(Anny,) < 8 {ﬁ—‘ exp(—csp) for all s, > ay.

Remark. Note that the statement of the above proposition holds even with respect to the Palm probability P°. This is
because introducing a point at the origin does not affect the event Anny,,, and hence P°(Anny, ) = P(Ann, ).

Appendix C. Proof of Theorem 7.7

Theorem C.1 (Restatement of Theorem 7.7). For Ap > A, we have
. Rin(Gm) 1 - (n
lim ]E(o’l) [ . = QeXt ]P(o'])(AeXt),
m-—>o0 A |C0(Gm)| Q(A)z ; t k,t [t]

Proof. Step 1: We first evaluate

lim E@V [Rk‘n(cm)l,q] = lim E(®V |:R’<”(Gm)1/*]
m—o0 |C0(Gm)| m—oo |CO(Gm)|1A

and then divide it by P(A) = P(0 € C(G%)) = 6(1) to obtain the required conditional expectation. We take the convention
that % = 0. Note that Assumption 1 ensures that (1) > 0.

Step 2: Specializing the statement of Theorem 7.1 on the event A, we obtain
1Co(Gpy)| 1Co(G®) N I
2

lim 14 = lim ——1 P-a.s.
m—oo AM A m— o0 Am2 A as

Notice that on the event A, Co(G%) = C(G°). Using (A.1), (8) and the note following Lemma 7.5, we have for A > A,

. 1Go(Gm)l . C(G) N Iyl

lim 1, = lim ——1,
m—oo  Am? m— oo Am?2

=0(A)14 PP-as.
Conditional on the mark of the origin Z(0) = 1, we have
Go(G

lim 10(Cn) 1, = 0(M)1, PO 55,

m—oo  AmM?2
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Step 3: Let Ry n(G) be the set of nodes that receive at least k out of the n packets from the origin when probabilistic
forwarding is carried out on G. Using arguments similar to those of Theorem 7.1 for nodes without I'},,-conduits, we have

that
fim g0 | RenCmdy gy g | Ren(@ 0 Tl
m= 00 amz m— 00 Am?2 Al

Step 4: For T C [n], let A% be the event that the origin is present in exactly the IECs indexed by T. Conditioning on
the event AS™, we obtain

EO.1) |Rk,n(g)ﬂfm|1A _
Am?

n
Z Z E(O’I) |Rk,n(g) N Fm| 1,
am?

t=0 T<(n]
T]=t

A;Xt:| [P’(O‘U(A%Xt). (C.])

If IT| < k, then the nodes of Ry ,(G) within I, must reside in finite clusters whose fraction vanishes in the limit of
large m. If |T| > k, then it is only the nodes which are within at least k IECs among those packet transmissions which
are indexed by T, that contribute towards the expectation. Denote such nodes by Ry r. The remaining nodes of Ry »(3G)
within I, must be in at least one finite cluster and hence their fraction vanishes in the limit. Additionally, given A$*® for
|T| > 0, the 0 must be present in the infinite cluster of the underlying graph i.e., 14 = 1. Putting all these together, we

obtain

R NI

lim E©V |:|k’"(g)2m|]A:| =
m— 00 Am

n
. |Rk T N Fm|
1 E(O,l) s
Jim 30y OV o

t=k TC[n]
|T|=t

A;Xti| P(O’U(A;Xt). (CZ)

Step 5: Define O to be the event that the origin has mark 1 in all the n packet transmissions. The expectation on the
RHS in the above equation can be written as

]E(O’U |Rk.T N Fm| Aext _ ]Eo |Rk,T n le
Am? T Am?

ATEN 0} .

Ri.r is independent of the packet transmissions which are not in T. The event O can be thus restricted to only those
indices in T. However, the conditioning event A$* N O is then the event that 0 is in the infinite cluster C* in the packet
transmissions indexed by T. Call this event A;. We then have

]E(o’l) |Rk,T N Fm| Aext — Eo |Rk,T n le
Am2 T Am?2

A;] (C.3)

Step 6: Conditional on the event A;, the set Ry r has the same distribution as the set C,ff“tTl, which was defined in
Section 6.3. This gives
t
At | = g0 Gy N Dol
T Am?2 ’

From Proposition A.4, by taking limits as m — oo, the expectation with respect to the Palm probability, E, can be written
in terms of the expectation E, yielding

Rer N T |CEXL N Iy
lim E° [' k1 0 [l A;“:| — lim IE|:k’|T| T (C.4)

IEo |Rk,T N Fm'
Am?

m— 00 am?2 m—o00 Am2
Step 7: Using (12) with n replaced by |T| = t and employing DCT, we obtain

e

m—oo

L =6 (C5)

Step 8: Clubbing the expressions from (C.3), (C.4) and (C.5) into (C.2), and using C.1, we obtain

n
lim E©D I:Rk,n(Gm)_lA] _ Z Z fExt PO (AS),

m— oo Am2
t=k TC[n]
|Tl=t
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Step 9: The event AS* can be expressed as

A;!_xt — m{o c Ciext} m{o ¢ C;"Xt}.

ieT j¢T

Here, CS%*, C$*, ..., C** denote the IECs corresponding to the n packet transmissions. Since {0 € CF*'} = {B1(0)NC;" # 0},
the event AS*" does not depend on the specific mark of 0. Furthermore, the event A" does not depend on the specific
choice of the set T, but just on the cardinality |T|. This is because a relabelling of the packets does not alter the probability
of A$™". For a particular value of |T| = t, define

t n
AN = (o™} () 10¢c™.
i=1

j=t+1

Notice now that the terms within the summation in Step 7, ¢ P®D(A$") are identical for different T with the same
cardinality. Therefore,

li (0,1) Rk*"(Gm) . n ext 1(0,1)/ pext
im E =) ) o5 BOVAT.

m— o0 Am?
t=k

Step 10: Putting together the results from Step 2 and Step 9 and dividing by 6(1) gives the statement of the theorem. O
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