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A B S T R A C T

This work studies queues in a Euclidean space. Consider 𝑁 servers that are distributed uniformly
in [0, 1]𝑑 . Customers arrive at the servers according to independent stationary processes. Upon
arrival, they probabilistically decide whether to join the queue they arrived at, or shift to one
of the nearest neighbours. Such shifting strategies affect the load on the servers, and may
cause some of the servers to become overloaded. We derive a law of large numbers and a
central limit theorem for the fraction of overloaded servers in the system as the total number
of servers 𝑁 → ∞. Additionally, in the one-dimensional case (𝑑 = 1), we evaluate the expected
fraction of overloaded servers for any finite 𝑁 . Numerical experiments are provided to support
our theoretical results. Typical applications of the results include electric vehicles queueing at
charging stations, and queues in airports or supermarkets.

1. Introduction

Traditional queueing systems involve multiple queues interacting with each other. The analysis of the queueing mechanism
and related load balancing questions are tractable owing to the product-form stationary distribution. Most earlier works on queues
distributed spatially involve customers arriving at random locations in a Euclidean space and a server travelling to serve them.
However, most queueing networks in the present day involve servers that are distributed in space and arrivals deciding among
multiple servers. This work addresses the problem of load distribution in such networks where the servers are spatially distributed
and the arrivals decide to join a server based on proximity.

As a motivating example, consider the rapidly growing electric vehicles (EV) industry. With increased adaptation of EVs, the
charging infrastructure is also being scaled up. However, physical and financial constraints put a cap on the number of charging
stations that can be deployed. In such a scenario, it is natural to expect EV users to adopt strategies in order to minimize their waiting
times at charging stations. For example, a user on arriving at a charging station and finding it to be occupied, might decide to travel
to a farther station in the hope that it would be empty. The user strategy affects the load that is perceived at the servers in the long
run. Some of the servers get overloaded which might degrade the performance of the system on the whole. An understanding of
the fraction of overloaded servers helps in optimal resource allocation preventing such degradation. Additionally, monitoring the
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fraction of overloaded servers can be used to incentivize customers to change their strategies thus increasing the durability of the
entire system. Similar considerations arise in other practical networks involving queues, like supermarkets, airports etc.

Motivated by such applications, in this work we consider a set of 𝑁 servers that are deployed in a Euclidean space with queues at
ach of them modelled as stationary arrival processes. In the context of EVs, the servers are the charging stations, and a stationary
rrival process models the EV users arriving at a charging station. EV charging stations have been modelled as a Poisson point
rocess in two dimensional space in several previous works (see, for e.g., [1–3]). However, the problem that authors address in

these works pertain to optimal placement of charging stations in the underlying space.
Another line of work that considers queues on spaces are polling systems. One of the earlier works in this domain [4] considers

multiple queues in a convex space with a single server moving across to serve them. Several later works, such as [5,6], study vehicle
routes and delay in such systems. In all of these (and some related) works there is a single server and there is no interaction between
different queues.

In contrast, in the present work we consider queues where customers from one queue probabilistically move to a queue which
is located close to it in the underlying space. Customers changing queues has been referred to as jockeying in the queueing theory
terminology. There has been considerable work on jockeying in queues in the past [7–9]. The focus in these works is predominantly
o analyse the steady-state distribution or find expected line-lengths or delays. However, they primarily consider two server systems
ith no spatial component in the problem.

In [10], the authors consider arrivals occurring on the two-dimensional torus, with multiple servers following a greedy strategy
to serve the customers by travelling minimally. They find that such a strategy results in servers coalescing making the system
inefficient. In contrast, in our work the servers are fixed whereas the arrivals follow nearest neighbour strategies and hence the two

orks are not directly comparable.
The closest work to ours is [11] where the authors consider load-balancing policies for servers distributed in space. Specifically,

𝑚 servers are distributed in a two-dimensional Euclidean space and 𝑛 customers arrive distributed uniformly in space. The customers
choose the shorter queue among the server they arrived at and a second server sampled uniformly at random from 𝑘 geographically
nearest servers of the server where the customer arrived. Specifically, the authors observe that such a policy shows a better
performance with respect to the maximum load. While these observations are interesting in their own right, the performance metrics
of interest and the model setting are considerably different from the current work. Instead of a setting where there are fixed number
of arrivals, we consider stationary arrival processes into each of the servers with customers following nearest neighbour mobility
strategies. Additionally, instead of the maximum load and the allocation distance, our interest is in the distribution of the number
of overloaded servers in the system. These differences render the two works incomparable. However, it should be remarked that
there is considerable scope for combining ideas from both the works.

More precisely, in the current work, 𝑁 servers are deployed in a Euclidean space and customers arriving into a queue decide
hether to stay or to move to a queue nearest to them with a prescribed probability. We call such strategies as nearest neighbour

hift (NNS) strategies. The metric of interest is the fraction of overloaded servers in the system which we characterize for users
ollowing an NNS strategy.

We begin by describing our system model and state the main results in Section 2. Section 3 provides the required background
n nearest neighbour graphs which will be used to characterize the overloaded servers for the NNS strategies. This is followed by
he analysis of NNS strategies for general dimension in Section 4 and additional results for one dimension in Section 5. Section 6

provides numerical simulations justifying our results and Section 7 highlights some future directions.

2. System model and main results

2.1. Model description

Consider 𝑁 service stations with locations {𝑋𝑖}𝑁𝑖=1 uniformly and independently distributed within [0, 1]𝑑 , 𝑑 ≥ 1, equipped with
the standard Euclidean metric. Each service station is associated with a stationary arrival process with an exogenous arrival rate of 𝜆,
a server operating at a service rate 𝜇, and a queue of infinite capacity. We use the terms queue 𝑖 and server 𝑖 to refer to the service
station located at 𝑋𝑖. Customers arriving at a queue can adopt different strategies. In this work, we consider all customers to be
dentical who make independent decisions. Our interest is in nearest neighbour shift (NNS) strategies which we describe next.

Definition 2.1. Under the (𝑘, 𝑝)-NNS strategy with activity range 𝑘 ≥ 1 and a shift rate 𝑝 ∈ [0, 1], customers arriving at queue 𝑖 join
queue 𝑖 with probability 1 − 𝑝, and join queue 𝑗 ∈ 𝑘(𝑖) with probability 𝑝

𝑘 , where 𝑘(𝑖) denotes the set of 𝑘 nearest neighbours of
𝑖.

We emphasize the difference between a customer arriving at a queue and joining a queue. Whereas each queue 𝑖 has exogenous
arrival rate 𝜆, the rate at which customers join queue 𝑖 may be smaller or larger than 𝜆.

Definition 2.2. The effective arrival rate 𝜆eff(𝑖) at a server 𝑖 is the rate at which customers join queue 𝑖.
Our goal is to characterize the expected fraction of overloaded servers in the system. Because each queue is processed at service

rate 𝜇, the load at queue 𝑖 is equal to 𝜌𝑖 =
𝜆eff(𝑖)
𝜇 , and the fraction of overloaded servers (with 𝜌𝑖 > 1) can be written as

𝑁 = 1
𝑁

|

|

|

{

𝑖 ∶ 𝜆eff(𝑖) > 𝜇}||
|

, (1)

where | ⋅ | denotes the cardinality. Note that 𝑁 is a random variable where the randomness is due to the spatial distribution of the
ervers.
2 
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2.2. Main results for general dimension

Our main results characterize the fraction of overloaded servers for the (𝑘, 𝑝)-NNS strategy for 𝑁 servers randomly distributed
ithin [0, 1]𝑑 . The results are described in terms of a geometric constant 𝛼𝑑 , defined as the maximum number of points that can
e placed on the unit sphere of R𝑑 so that the distance between all distinct points is strictly larger than one. It is known [12] that

𝛼2 = 5 and 𝛼3 = 12, and that 𝛼𝑑 is bounded from above by the kissing number in R𝑑 .

Theorem 2.1. Consider 𝑁 servers with service rate 𝜇 that are uniformly distributed in [0, 1]𝑑 and receive exogenous arrivals at rate 𝜆
ollowing the (𝑘, 𝑝)-NNS strategy.

(i) If 1
1−𝑝+𝛼𝑑𝑝

< 𝜆
𝜇 ≤ 1, then there exist constants 𝑞𝑑 ,𝑘,𝑛 and 𝜎𝑑 ,𝑘 such that for 𝑁 → ∞, the fraction of overloaded servers satisfies

𝑁
a.s.
→

𝛼𝑑𝑘
∑

𝑛=⌊𝜃⌋+1
𝑞𝑑 ,𝑘,𝑛 and

√

𝑁
(

𝑁 − E𝑁
) d
→  (0, 𝜎2𝑑 ,𝑘)

where 𝜃 = 𝑘 + 𝑘
𝑝

(

𝜇
𝜆 − 1

)

.

(ii) If 𝜆
𝜇 ≤ 1

1−𝑝+𝛼𝑑𝑝
, then 𝑁 = 0 a.s. for all 𝑁 .

Theorem 2.1 confirms that the number of overloaded servers has a normal distribution in the regime when 𝑁 → ∞. This is
illustrated in our numerical results in Section 6. The constants 𝑞𝑑 ,𝑘,𝑛, 𝜎𝑑 ,𝑘 are discussed in Section 3.2. Note that the almost sure (a.s.→)
and distributional ( d

→) limits above refer to the randomness induced by the spatial distribution of the servers.

2.3. Main results for one dimension

As a corollary of Theorem 2.1, we obtain the following explicit result for dimension 𝑑 = 1 in which the arrivals follow the
(1, 𝑝)-NNS strategy.

Corollary 2.1. Consider 𝑁 servers with service rate 𝜇 that are uniformly distributed in [0, 1] and receive exogenous arrivals at rate 𝜆
following the (1, 𝑝)-NNS strategy.

(i) If 1
1+𝑝 < 𝜆

𝜇 ≤ 1, then the fraction of overloaded servers satisfies

𝑁
a.s.
→

1
4

and
√

𝑁
(

𝑁 − E𝑁
) d
→ 

(

0, 19
240

)

as 𝑁 → ∞.

(ii) If 𝜆
𝜇 ≤ 1

1+𝑝 , then 𝑁 = 0 a.s. for all 𝑁 .

In one dimension, additional explicit results can be obtained. In fact, for 𝑑 = 1 and 𝑘 = 1, we obtain the exact expression for
E𝑁 for all 𝑁 ≥ 1. Specifically, for the (1, 𝑝)-NNS strategy, we find that a quarter of the servers get overloaded which is stated in
the following theorem.

Theorem 2.2. Consider 𝑁 ≥ 4 servers distributed uniformly in [0, 1] with exogenous arrivals of rate 𝜆 following the (1, 𝑝)-NNS strategy
and having a service rate 𝜇. If 1

1+𝑝 < 𝜆
𝜇 ≤ 1, then the expected fraction of overloaded servers is E𝑁 = 1

4 .

In the process of proving this theorem, we also obtain the expected fraction of servers with all possible loads. This is detailed in
ection 5.

Often, EV users tend to have a pre-determined destination while joining a highway and choose either to go left (with probability
𝓁) or right (with probability 𝑟) and proceed to the nearest server in that direction (or stay in the same queue with probability
1 − 𝑟− 𝓁). Customers at the left (right) boundary, choose the closest neighbour on the right (resp., left) with probability 𝑟 (resp., 𝓁)
or stay in the same queue with the remaining probability. For such a left–right nearest neighbour shift (𝓁𝑟-NNS) strategy, the following
heorem asserts that there are no overloaded servers.

Theorem 2.3. For 𝑁 servers distributed uniformly in [0, 1] with stationary exogenous arrivals of intensity 𝜆 ≤ 𝜇 following the 𝓁𝑟-NNS
strategy with parameters 𝑟 and 𝓁, the fraction of overloaded servers equals 𝑁 = 0 a.s.

3. Nearest neighbour graphs

In this section, we provide some background knowledge required in order to prove the main results. The proof of Theorem 2.2
relies on the distribution of order statistics which is detailed in Section 3.1. Section 3.2 provides some results on 𝑘-NN graphs that
are required to prove Theorem 2.1.
3 
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3.1. Order statistics

The primary tool that we will use in the 1D case are the order statistics of the server locations which we define below. Let
𝑋1,… , 𝑋𝑁 be iid random variables from a distribution 𝐹 (⋅) with density 𝑓 (⋅) supported on [0, 1]. When arranged in the order of
magnitude and then written as 𝑋(1) ≤ 𝑋(2) ≤ ⋯ ≤ 𝑋(𝑁), the random variable 𝑋(𝑖) is called the 𝑖th order statistic, and together they
are referred to as the order statistics of 𝑋1,… , 𝑋𝑁 .

The following are some facts about order statistics that will be used in our analysis (see e.g., [13,14]). These are stated for
𝑓 (𝑥) = 𝟏{𝑥 ∈ [0, 1]} and 𝐹 (𝑥) = ∫ 𝑥

0 𝑓 (𝑥)𝑑 𝑥 since in our case the servers are distributed uniformly in [0, 1].

• Fact 1: Conditioned on 𝑋(𝑖) = 𝑎, the random variables 𝑋(1),… , 𝑋(𝑖−1) are the order statistics of

𝑌1,… , 𝑌𝑖−1
iid∼ Unif ([0, 𝑎]) , (2)

and 𝑋(𝑖+1),… , 𝑋(𝑁) are the order statistics of

𝑌𝑖+1,… , 𝑌𝑁
iid∼ Unif ([𝑎, 1]) . (3)

Moreover, 𝑋(1), . . . , 𝑋(𝑖−1) and 𝑋(𝑖+1),… , 𝑋(𝑁) are conditionally independent given 𝑋(𝑖).
• Fact 2: The joint density of the 𝑖th and the 𝑗th order statistic for 𝑖 < 𝑗 is given by

𝑓𝑖,𝑗 (𝑟, 𝑠) = 𝑁!
(𝑖 − 1)!(𝑗 − 𝑖 − 1)!(𝑁 − 𝑗)!

𝐹 (𝑟)𝑖−1𝑓 (𝑟) [𝐹 (𝑠) − 𝐹 (𝑟)]𝑗−𝑖−1 𝑓 (𝑠)[1 − 𝐹 (𝑠)]𝑁−𝑗 . (4)

3.2. 𝑘-NN graph

To characterize the (𝑘, 𝑝)-NNS strategy for general dimension, we map the problem onto a graph and use results from stochastic
geometry.

Definition 3.1. The 𝑘-NN graph 𝐺𝑁
𝑑 ,𝑘 = (𝑉 , 𝐸) is a directed graph on the vertex set 𝑉 = {𝑋1,… , 𝑋𝑁} with 𝑋𝑖 ∈ [0, 1]𝑑 , and the edge

et is constructed in the following way: add a directed edge 𝑖 → 𝑗, if node 𝑗 is one of the 𝑘-nearest neighbours of node 𝑖.

In this work, the vertex set 𝑉 for the 𝑘-NN graph is taken to be 𝑁 nodes distributed uniformly within [0, 1]𝑑 . The in-degree
of a vertex 𝑖 is the number of incoming edges to 𝑖, i.e., |{𝑗 ∶ 𝑗 → 𝑖}| and the out-degree is the number of outgoing edges from 𝑖
i.e., |{𝑗 ∶ 𝑖 → 𝑗}|. Some properties of the 𝑘-NN graph (see e.g., [12]) are listed below:

1. Every node 𝑖 ∈ 𝐺𝑁
𝑑 ,𝑘 has out-degree 𝑘.

2. Every node 𝑖 ∈ 𝐺𝑁
𝑑 ,𝑘 has in-degree at most 𝛼𝑑𝑘, where 𝛼𝑑 is the geometric constant defined in Section 2.2.

A directed graph 𝐻1 = (𝑉1, 𝐸1) is said to be a subgraph of 𝐻2 = (𝑉2, 𝐸2), denoted 𝐻1 ⊆ 𝐻2, if 𝑉1 ⊆ 𝑉2 and 𝐸1 ⊆ 𝐸2. Two directed
graphs 𝐻1 and 𝐻2 are said to be isomorphic to each other if there exists a bijection 𝑓 ∶ 𝑉1 → 𝑉2 such that (𝑖, 𝑗) ∈ 𝐸1 if and only if
(𝑓 (𝑖), 𝑓 (𝑗)) ∈ 𝐸2. A directed graph is said to be weakly connected if the graph obtained on replacing the directed edges with undirected
edges is connected. A subgraph that is weakly connected is referred to as a component.

Let 𝐼𝑁𝐷 be the number of directed subgraphs of 𝐺𝑁
𝑑 ,𝑘 that are isomorphic to a particular directed graph 𝐷. The convergence of

these subgraph counts is characterized in [12] which is reproduced below. Here  (𝜇 , 𝜎2) denotes a normal distribution with mean
𝜇 and variance 𝜎2.

Theorem 3.1 ([12, Theorem 2.1]). For any weakly connected directed graphs 𝐷1,… , 𝐷𝑚 and any real numbers 𝑎1,… , 𝑎𝑚 there exist
constants 𝜉 and 𝜎 such that 𝐼𝑁 = 𝑎1𝐼𝑁𝐷1

+ 𝑎2𝐼𝑁𝐷2
+⋯ + 𝑎𝑚𝐼𝑁𝐷𝑚

satisfies
𝐼𝑁

𝑁
a.s.
→ 𝜉 and

𝐼𝑁 − E
[

𝐼𝑁
]

√

𝑁

d
→  (0, 𝜎2) as 𝑁 → ∞.

The subgraph of our interest is the directed star graph 𝐾𝑖 = (𝑉𝑖, 𝐸𝑖) with 𝑉𝑖 = {1, 2,… , 𝑖+ 1} and 𝐸𝑖 = {(1, 𝑖+ 1), (2, 𝑖+ 1),… , (𝑖, 𝑖+ 1)}
as shown in Fig. 1. The directed star graph captures the in-degree of a node which is key to our analysis. Let 𝑄𝑁

𝑑 ,𝑘,𝑗 denote the number
of nodes whose in-degree is 𝑗 in 𝐺𝑁

𝑑 ,𝑘. The following proposition relates the quantities 𝑄𝑁
𝑑 ,𝑘,𝑗 and 𝐼𝑁𝐾𝑖

. We include a proof of it here
since it was omitted in [12].

Proposition 3.2. For 𝑁 > 𝛼𝑑𝑘 + 1,

𝑄𝑁
𝑑 ,𝑘,𝑗 =

𝛼𝑑𝑘
∑

𝑖=𝑗
(−1)𝑖−𝑗

(

𝑖
𝑗

)

𝐼𝑁𝐾𝑖
. (5)
4 
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Fig. 1. The star graph 𝐾𝑖 formed by a node with in-degree 𝑖.

Proof. Since 𝐾𝑖 ⊆ 𝐾𝑖+1, the number of copies of 𝐾𝑖 in 𝐺𝑁
𝑑 ,𝑘 can be written as

𝐼𝑁𝐾𝑖
= 𝑄𝑁

𝑑 ,𝑘,𝑖 +
(

𝑖 + 1
𝑖

)

𝑄𝑁
𝑑 ,𝑘,𝑖+1 +⋯ +

(

𝛼𝑑𝑘
𝑖

)

𝑄𝑁
𝑑 ,𝑘,𝛼𝑑𝑘.

Stacking these equations into a matrix form for 1 ≤ 𝑖 ≤ 𝛼 𝑘, we obtain
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐼𝑁𝐾1
𝐼𝑁𝐾2
⋮

𝐼𝑁𝐾𝛼𝑑𝑘−1

𝐼𝑁𝐾𝛼𝑑𝑘

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
(2
1

)

⋯
(𝛼𝑑𝑘−1

1

) (𝛼𝑑𝑘
1

)

0 1 ⋯
(𝛼𝑑𝑘−1

2

) (𝛼𝑑𝑘
2

)

⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 1

( 𝛼𝑑𝑘
𝛼𝑑𝑘−1

)

0 0 ⋯ 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑄𝑁
𝑑 ,𝑘,1

𝑄𝑁
𝑑 ,𝑘,2
⋮

𝑄𝑁
𝑑 ,𝑘,𝛼𝑑𝑘−1

𝑄𝑁
𝑑 ,𝑘,𝛼𝑑𝑘+1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (6)

The system of linear equations can be solved for the variables 𝑄𝑁
𝑑 ,𝑘,⋅ to obtain the statement of the proposition. □

As a corollary of Proposition 3.2 and Theorem 3.1, we obtain the convergence of the random variables 𝑄𝑁
𝑑 ,𝑘,𝑗 as stated below.

Corollary 3.1. For 0 ≤ 𝑗 ≤ 𝛼𝑑𝑘, there exist constants 𝑞𝑑 ,𝑘,𝑗 and 𝜎𝑑 ,𝑘,𝑗 such that as 𝑁 → ∞,
𝑄𝑁

𝑑 ,𝑘,𝑗
𝑁

a.s.
→ 𝑞𝑑 ,𝑘,𝑗 and

𝑄𝑁
𝑑 ,𝑘,𝑗 − E

[

𝑄𝑁
𝑑 ,𝑘,𝑗

]

√

𝑁

d
→  (0, 𝜎2𝑑 ,𝑘,𝑗 ).

The value of the constant 𝑞𝑑 ,𝑘,𝑗 is hard to compute for general 𝑘. For the case of 𝑘 = 1, [15] shows that

𝑞𝑑 ,1,𝑗 = 1
𝑗!

𝛼𝑑−𝑗
∑

𝑖=0

(−1)𝑖

𝑖!
𝐶𝑑
𝑖+𝑗 , (7)

where

𝐶𝑑
𝑘 = ∫𝐴𝑑

𝑘

𝑒−vol
(

𝐵(𝑢1 ,‖𝑢1‖)∪⋯∪𝐵(𝑢𝑘 ,‖𝑢𝑘‖)
)

𝑑 𝑢1 … 𝑑 𝑢𝑘,

with 𝐵(𝑢, 𝑟) denoting the ball of radius 𝑟 centred at 𝑢,

𝐴𝑑
𝑘 =

{

(𝑢1,… , 𝑢𝑘) ∈ (R𝑑 )𝑘 ∶ ‖𝑢𝑖‖ < ‖𝑢𝑗 − 𝑢𝑖‖ for all 𝑖 ≠ 𝑗
}

,

and vol(𝐵) denoting the Lebesgue measure of set 𝐵.

4. Proof for general dimension

In this section we present the proof of Theorem 2.1 characterizing the fraction of overloaded service stations for the (𝑘, 𝑝)-NNS
strategy in [0, 1]𝑑 .

Proof of Theorem 2.1.
Assume that 𝜆 < 𝜇 and 0 < 𝑝 ≤ 1. We denote by 𝑑in(𝑖) and 𝑑out (𝑖) the in-degree and the out-degree of node 𝑖 in the 𝑘-NN graph of

the servers. Because the server locations are independently and uniformly distributed in [0, 1]𝑑 , we see that all inter-server distances
are unique with probability one. As a consequence, 0 ≤ 𝑑in(𝑖) ≤ 𝛼𝑑𝑘 and 𝑑out (𝑖) = 𝑘 for all 𝑖 almost surely, as explained in Section 3.2.
Recall that customers arriving at location 𝑖 join queue 𝑖 with probability 1 − 𝑝, and customers arriving at location 𝑗 with 𝑖 ∈  (𝑗)
𝑘

5 
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join queue 𝑖 with probability 𝑝
𝑘 . Because the arrival processes are stationary and mutually independent with intensity 𝜆, it follows

that the net rate of customers joining queue 𝑖 equals 𝜆eff(𝑖) = 𝜆(1 − 𝑝) + 𝜆𝑑in(𝑖)
𝑝
𝑘 . We conclude queue 𝑖 is overloaded if and only if

𝜆(1 − 𝑝) + 𝜆𝑑in(𝑖)
𝑝
𝑘
> 𝜇 ,

or equivalently, 𝑑in(𝑖) > 𝜃 where 𝜃 = 𝑘+ 𝑘
𝑝

(

𝜇
𝜆 − 1

)

. As a consequence, the fraction of overloaded queues in the system can be written
s

𝑁 = 1
𝑁

∑

𝑛∶𝑛>𝜃
𝑄𝑁

𝑑 ,𝑘,𝑛,

where 𝑄𝑁
𝑑 ,𝑘,𝑛 equals the number of servers with in-degree 𝑛. Because 𝑑in(𝑖) ≤ 𝛼𝑑𝑘, we note that 𝑄𝑁

𝑑 ,𝑘,𝑛 = 0 for 𝑛 > 𝛼𝑑𝑘 almost surely.
herefore, with probability one,

𝑁 =

{ 1
𝑁

∑𝛼𝑑𝑘
𝑛=⌊𝜃⌋+1 𝑄

𝑁
𝑑 ,𝑘,𝑛, 𝜃 < 𝛼𝑑𝑘,

0, 𝜃 ≥ 𝛼𝑑𝑘.
(8)

We also note that 𝜃 ≥ 𝛼𝑑𝑘 if and only if 𝜆
𝜇 ≤ 1

1−𝑝+𝛼𝑑𝑝
. Hence 𝑁 = 0 a.s. for 𝜆

𝜇 ≤ 1
1−𝑝+𝛼𝑑𝑝

.
Let us now assume that 1

1−𝑝+𝛼𝑑𝑝
< 𝜆

𝜇 ≤ 1. Then 𝜃 < 𝛼𝑑𝑘. Corollary 3.1 then implies that

𝑁
a.s.
→

𝛼𝑑𝑘
∑

𝑛=⌊𝜃⌋+1
𝑞𝑑 ,𝑘,𝑛 as 𝑁 → ∞.

Moreover, Proposition 3.2 implies that
𝛼𝑑𝑘
∑

𝑛=⌊𝜃⌋+1
𝑄𝑁

𝑑 ,𝑘,𝑛 =
𝛼𝑑𝑘
∑

𝑛=⌊𝜃⌋+1

𝛼𝑑𝑘
∑

𝑚=𝑛
(−1)𝑚−𝑛

(

𝑚
𝑛

)

𝐼𝑁𝐾𝑚
=

𝛼𝑑𝑘
∑

𝑚=⌊𝜃⌋+1

( 𝑚
∑

𝑛=⌊𝜃⌋+1
(−1)𝑚−𝑛

(

𝑚
𝑛

)

)

𝐼𝑁𝐾𝑚
.

We conclude that the fraction of overloaded servers can be written as

𝑁 = 1
𝑁

𝛼𝑑𝑘
∑

𝑚=1
𝑎𝑚𝐼

𝑁
𝐾𝑚

,

where

𝑎𝑚 =

{

∑𝑚
𝑛=⌊𝜃⌋+1(−1)

𝑚−𝑛(𝑚
𝑛

)

, 𝑚 ≥ ⌊𝜃⌋ + 1,
0, 𝑚 ≤ ⌊𝜃⌋.

Theorem 3.1 then asserts that
√

𝑁
(

𝑁 − E𝑁
) d
→  (0, 𝜎2) for some constant 𝜎. □

5. Proofs for one dimension

The case of dimension 𝑑 = 1 is interesting in its own right since it can be motivated by numerous applications. With reference
to the examples discussed in the introduction, EV charging stations located on a highway and checkout counters at supermarkets
orrespond to queues on a 1D space.

5.1. In-degree frequencies in the one-dimensional 1-NN graph

In this section we analyse the in-degree frequencies in the 1-NN graph 𝐺𝑁
1,1 in dimension 𝑑 = 1, which will be useful in

characterizing the overloaded servers in one dimension. In 𝐺𝑁
1,1, a particular vertex can have in-degrees {0, 1, 2}. This is because

a node 𝑖 could be the nearest neighbour to at most two vertices on either side of 𝑖. Recall that 𝑄𝑁
𝑑 ,𝑘,𝑛 equals the number of nodes

with in-degree 𝑛 in 𝐺𝑁
𝑑 ,𝑘. The following lemma describes the expected in-degree frequencies in 𝐺𝑁

1,1.

Proposition 5.1. For any 𝑁 ≥ 4, the expected proportions of nodes with in-degree 𝑠 = 0, 1, 2 in the 1-NN graph on [0, 1] are given by

E
[𝑄𝑁

1,1,0

𝑁

]

= 1
4
, E

[𝑄𝑁
1,1,1

𝑁

]

= 1
2
, and E

[𝑄𝑁
1,1,2

𝑁

]

= 1
4
.

Proof. Let 𝑋(1),… , 𝑋(𝑁) denote the order statistics of the locations of the 𝑁 servers. In the following discussion, node 𝑖 will
refer to the 𝑖th order statistic. For 3 ≤ 𝑖 ≤ 𝑁 − 2, node 𝑖 has no incoming edges in 𝐺𝑁

1,1 if and only if both the events
𝐸+
𝑖 ∶= {𝑋(𝑖+2) − 𝑋(𝑖+1) < 𝑋(𝑖+1) − 𝑋(𝑖)} and 𝐸−

𝑖 ∶= {𝑋(𝑖−1) − 𝑋(𝑖−2) < 𝑋(𝑖) − 𝑋(𝑖−1)} occur simultaneously. We first compute the
robability of the event 𝐸+ ∩ 𝐸−.
𝑖 𝑖

6 
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Fig. 2. Region of integration.

From Fact 1 of Section 3.1, conditioned on the value of 𝑋(𝑖) = 𝑥, the events 𝐸+
𝑖 and 𝐸−

𝑖 are independent. Thus

P(𝐸+
𝑖 ∩ 𝐸−

𝑖 ) = ∫

1

0
P(𝑋(𝑖+2) > 2𝑋(𝑖+1) − 𝑥|𝑋(𝑖) = 𝑥)

P(𝑋(𝑖−2) > 2𝑋(𝑖−1) − 𝑥|𝑋(𝑖) = 𝑥)𝑓𝑋(𝑖)
(𝑥)𝑑 𝑥, (9)

where 𝑓𝑋(𝑖)
(⋅) is the density of the 𝑖th order statistic. We will now evaluate each of the probabilities in the above expression using

(2), (3) and (4). For this, we first write down the joint distribution of the 𝑗th and the (𝑗 + 1)-th order statistic using (4) to be

𝑓𝑗 ,𝑗+1(𝑟, 𝑠) = 𝑁!
𝐹 (𝑟)𝑗−1𝑓 (𝑟)𝑓 (𝑠)(1 − 𝐹 (𝑠))𝑁−𝑗−1

(𝑗 − 1)!(𝑁 − 𝑗 − 1)! . (10)

Using (2), (3) with (10) the required integral can be computed as follows: (see Fig. 2)

P
(

𝑋(𝑖−2) > 2𝑋(𝑖−1) − 𝑥|𝑋(𝑖) = 𝑥
)

= ∫

𝑥

0 ∫

𝑠

0

(𝑖 − 1)!
(𝑖 − 3)!

(

𝑟𝑖−3

𝑥𝑖−1

)

𝑑 𝑟𝑑 𝑠 − ∫

𝑥

𝑥
2

∫

2𝑠−𝑥

0

(𝑖 − 1)!
(𝑖 − 3)!

(

𝑟𝑖−3

𝑥𝑖−1

)

𝑑 𝑟𝑑 𝑠

= ∫

𝑥

0

(𝑖 − 1)(𝑖 − 2)
𝑥𝑖−1

(

𝑠𝑖−2

𝑖 − 2
)

𝑑 𝑠 − ∫

𝑥

𝑥
2

(𝑖 − 1)(𝑖 − 2)
𝑥𝑖−1

(

(2𝑠 − 𝑥)𝑖−2

𝑖 − 2
)

𝑑 𝑠

= 𝑖 − 1
𝑥𝑖−1 ∫

𝑥

0
𝑠𝑖−2 𝑑 𝑠 − 𝑖 − 1

𝑥𝑖−1 ∫

𝑥

𝑥
2

(2𝑠 − 𝑥)𝑖−2 𝑑 𝑠

= 1 − 𝑖 − 1
𝑥𝑖−1 ∫

𝑥

𝑥
2

(2𝑠 − 𝑥)𝑖−2 𝑑 𝑠 = 1
2
.

and similarly P(𝑋(𝑖+2) > 2𝑋(𝑖+1) − 𝑥|𝑋(𝑖) = 𝑥) = 1
2 . Substituting this in (9), we obtain

P(𝐸+
𝑖 ∩ 𝐸−

𝑖 ) = ∫

1

0

𝑓𝑋(𝑖)
(𝑥)

4
𝑑 𝑥 = 1

4
.

Nodes 1 and 𝑁 have no incoming edges if the event 𝐸+
1 and 𝐸−

𝑁 are true respectively. Moreover, nodes 2 and 𝑁 − 1 always have
an incoming edge from nodes 1 and 𝑁 respectively. Thus,

E
[𝑄𝑁

1,1,0

𝑁

]

= 1
𝑁

E

[

𝟏{𝐸+
1 } + 𝟏{𝐸−

𝑁} +
𝑁−2
∑

𝑖=3
𝟏{𝐸+

𝑖 ∩ 𝐸−
𝑖 }

]

= 1
𝑁

[

2 ⋅ 1
2
+ (𝑁 − 4) ⋅ 1

4

]

.

For 𝑁 ≥ 4, we obtain E
[𝑄𝑁

1,1,0
𝑁

]

= 1
4 . Similar computations for E

[𝑄𝑁
1,1,1
𝑁

]

and E
[𝑄𝑁

1,1,2
𝑁

]

prove the proposition. □

In fact, a stronger statement to Proposition 5.1 holds for 𝑄𝑁
1,1,0 and 𝑄𝑁

1,1,2 which is stated below.

Proposition 5.2. The number of vertices with in-degree 0 and 2 in the 1-NN graph on [0, 1] are the same, that is, 𝑄𝑁
1,1,0 = 𝑄𝑁

1,1,2 a.s.

Proof. A crucial observation for the 1-NN graph is that the only possible cycles are 2-cycles comprising of two nodes that are mutual
nearest neighbours (see [16]). If all the components of the 1-NN graph 𝐺𝑁

1 in one dimension are 2-cycles as shown in Fig. 3(a), then
𝑄𝑁

1,1,0 = 𝑄𝑁
1,1,2 = 0. On the other hand, every component of more than two vertices contains exactly one 2-cycle. Such components

can be of two types: starting at a node of in-degree 0 and culminating in the 2-cycle as shown in Fig. 3(b) or starting and ending at
a node of in-degree 0 with a 2-cycle in between as shown in Fig. 3(c). In the former case, since the starting vertex has in-degree 0
and one of the vertices in the 2-cycle associated with the component has in-degree 2, every component of size greater than 2 can be
associated with such a unique pair of vertices with in-degrees of 0 and 2. Likewise, in the latter case, the component has two node
7 
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Fig. 3. Illustration of 𝑄𝑁
1,1,0 = 𝑄𝑁

1,1,2. An arrow 𝑖 → 𝑗 indicates 𝑗 is the nearest neighbour of 𝑖.

in the 2-cycle which have in-degree 2 and the two nodes at the extremes of the component have in-degree 0. Thus, in all the cases
we have that 𝑄𝑁

1,1,0 = 𝑄𝑁
1,1,2 almost surely which proves the claim. □

5.2. (1, 𝑝)-NNS strategy

In this section, we characterize the overloaded servers for the (1, 𝑝)-NNS strategy in one-dimension by proving Theorem 2.2.

Proof of Corollary 2.1. Let 𝑑 = 1 and 𝑘 = 1. Then 𝛼1 = 2, and by Theorem 2.1 we find that 𝑁 = 0 a.s. when 𝜆
𝜇 ≤ 1

1+𝑝 .

Assume next that 1
1+𝑝 < 𝜆

𝜇 ≤ 1. Then the constant 𝜃 in Theorem 2.1 equals 𝜃 = 1 + 1
𝑝

(

𝜇
𝜆 − 1

)

and is bounded by 1 ≤ 𝜃 < 2.
Theorem 2.1 then implies that

𝑁
a.s.
→ 𝑞1,1,2 and

√

𝑁
(

𝑁 − E𝑁
) d
→  (0, 𝜎21,1).

The claim follows by plugging in the values of the constants 𝑞1,1,2 =
1
4 and 𝜎21,1 =

19
240 obtained in [17]. □

Proof of Theorem 2.2. Because 1
1+𝑝 < 𝜆

𝜇 ≤ 1, we see that the constant 𝜃 in (8) is bounded by 1 ≤ 𝜃 < 2. Because 𝛼1 = 2 for 𝑑 = 1,
we see that (8) takes the form 𝑁 = 1

𝑁𝑄𝑁
1,1,2. Proposition 5.1 now yields the result E[𝑁 ] = 1

4 . □

Remark 5.1. While Theorem 2.2 characterizes the fraction of overloaded servers for 𝑁 ≥ 4, it can be inferred exhaustively that
E2 = 0 and E3 =

1
3 .

5.3. Left–right strategy

Proof of Theorem 2.3. Consider a service station 𝑖 that is not located at the boundary of [0, 1]. Customers arriving at queue 𝑖 join
queue 𝑖 with probability 1 − 𝓁 − 𝑟. Customers arriving to the nearest queue to the left (resp. right) of 𝑖 join queue 𝑖 with probability
𝓁 (resp. right). Therefore, the net rate of customers joining queue 𝑖 equals

𝜆eff(𝑖) = 𝜆(1 − 𝓁 − 𝑟) + 𝜆𝓁 + 𝜆𝑟 = 𝜆.

A similar computation shows that 𝜆eff(𝑖) = 𝜆 also for the service stations located at the boundary of [0, 1]. Therefore, 𝑁 = 0 a.s. □

6. Numerical results

In this section, we present simulation experiments complementing our theoretical results. We restrict to the case of 𝑘 = 1 since
the constants in our results (or their approximation using Monte Carlo simulations) are known only for the (1, 𝑝)-NNS strategy.

Consider 𝑁 = 1000 servers deployed uniformly in [0, 1], each of which is associated with an independent arrival process of
intensity 𝜆 = 1. The arrival process is simulated for 𝑡 = 1000 time units with a shift probability 𝑝. The probability parameter 𝑝 is
chosen from the set {1, 0.75, 0.5, 0.25}. Fig. 4(a) plots the histogram of the observed number of overloaded servers (𝑄𝑁

1,1,2) and the
servers with no change in load (𝑄𝑁

1,1,1) over 1000 instantiations of the server locations in the one dimensional case. The number
of overloaded servers is concentrated well around the mean of 𝑁∕4 = 250 irrespective of the probability 𝑝 corroborating with
Theorem 2.2.
8 
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Table 1
Values of the asymptotic 𝑘-NN in-degree distri-
bution 𝑞𝑑 ,𝑘,𝑗 for 𝑑 = 2 and 𝑘 = 1. Recall that
𝑞2,1,𝑗 = 0 for 𝑗 ≥ 6.

𝑗 𝑞𝑗 (2, 1)

0 2.84 × 10−1
1 4.63 × 10−1
2 2.22 × 10−1
3 3.04 × 10−2
4 6.56 × 10−4
5 1.90 × 10−7

Fig. 4. Histogram of the number of overloaded servers and the servers with no change in load for different probability values of the (1, 𝑝)-NNS strategy in (a)
ne dimension and (b) two dimension.

Fig. 4(b) shows a similar histogram of the expected fraction of overloaded servers when the servers are distributed in [0, 1]2. The
values of the constants 𝑞2,1,𝑗 for 𝑗 = 0, 1,… , 5 have been computed using Monte Carlo simulations in [18] which is reproduced in
Table 1.

When the servers are distributed in 2D and customers follow the (1, 𝑝)-NNS strategy, Theorem 2.1 states that the fraction of
overloaded servers converges to ∑5

𝑗=2 𝑞2,1,𝑗 almost surely as 𝑁 → ∞. Using the values from Table 1, we obtain ∑5
𝑗=2 𝑞2,1,𝑗 ≈ 0.252

which is where the blue peak is located in Fig. 4(b). Further supporting the result is the peak observed of the fraction of servers
with no change in load which is equal to 𝑞2,1,1 = 0.463.

7. Conclusions and future work

In this paper, we considered multiple servers on a 𝑑-dimensional Euclidean space, where arriving customers follow a probabilistic
olicy to either remain in the queue or to join a nearest neighbour. In this setting, we provided distributional properties of the
raction of overloaded servers in the stationary regime.

Numerous questions remain yet to be answered in this setting, some of which are discussed below.

7.1. Spatial distribution of overloaded servers

In the long run, overloaded servers require higher maintenance and allocating more capacity. This necessitates a characterization
f their distribution in space. Figs. 5 and 6 show the distribution of the overloaded servers in space in one and two dimensions

respectively. It is reasonable to expect that overloaded servers do not occur close to one another. For example, three adjacent
ervers in dimension one cannot be overloaded since their total in-degree is upper bounded by 5 in 𝐺𝑁

1,1. This suggests that the
patial point pattern of overloaded servers resembles more a Matérn point process than a standard Poisson point process [19]. The

spatial distribution is of particular importance in the context of electric vehicles since it gives the distribution of locations of charging
tations requiring maintenance.

7.2. State-dependent shift probabilities and adaptive mobility strategies

Exploring state-dependent strategies, where shift probabilities change with transient parameters such as the queue length, is
n important research direction. On a related note, [20,21] investigate the steady-state behaviour and system stability when the

arrivals are distributed on the circle and a myopic server operates according to a greedy policy serving the nearest arrivals. In our
9 
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Fig. 5. Spatial distribution of 100 service stations , underloaded stations, stations with no change in load and overloaded stations in [0, 1] for different probability
values.

Fig. 6. Spatial distribution of 1000 service stations (top-left), overloaded stations (top-right), underloaded stations (bottom-left) and stations with unchanged
oad (bottom-right) in [0, 1]2 for different probability values.
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case, however, we have multiple servers. When customers change queues based on the queue length they observe when they arrive,
characterization of the steady-state behaviour and stability are compelling future directions. As a first step in this direction, one
ould study an adaptive (𝑘, 𝑝)-NNS strategy where customers join empty queues or, with probability 𝑝, join a non-empty queue;

otherwise, they select one of the 𝑘 nearest neighbouring queues. Such strategies likely improve server utilization and reduce idling.
Techniques similar to those in [22] might be feasible for showing that overloaded queues under adaptive strategies would also be
overloaded under non-adaptive ones, potentially using non-adaptive results as upper bounds for adaptive cases. Understanding these
dynamics under state-dependent and adaptive strategies remains an interesting area for future research.

7.3. Impact of ambient space

How does the ambient space impact 𝑁? If factors from the Euclidean space such as traversal times to other queues are
considered, several classical queueing problems (delay, wait times etc.) can be formulated which might be interesting in their own
right, see for example [23] and references therein.
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