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Abstract

Motivated by applications in sensor networks and the Internet of Things (IoT), in this dis-

sertation, we consider the problem of energy-efficient broadcasting from a source node in

a large dense network. Flooding, as a broadcast mechanism, involves each node forward-

ing every packet it receives, to all its neighbours. This results in excessive transmissions

and thus a high energy expenditure overall. Probabilistic forwarding involves each node

forwarding a received packet to all its neighbours with a certain probability p < 1. While

this mechanism reduces the number of transmissions, reception of a packet by a network

node is not guaranteed.

In the first part of this thesis, we propose a new broadcast algorithm which introduces

redundancy, in the form of coded packets, into the probabilistic forwarding protocol to

improve the chances of a network node receiving a packet. Specifically, we assume that

the source node has ks data packets to broadcast, which are encoded into n ≥ ks coded

packets, such that reception of any k of these coded packets by a network node, suffices

to recover the original ks data packets. Our interest is in determining the minimum

forwarding probability, p, for which the expected fraction of nodes receiving at least k out

of the n coded packets is close to 1. This we deem a “near-broadcast”. The minimum

forwarding probability p yields the minimum value for the expected total number of

transmissions across all the network nodes needed for a near-broadcast. The expected

total number of transmissions is taken to be a measure of the energy expenditure in the

network.

In the second part of the thesis, the proposed algorithm is analyzed on deterministic

graphs. More specifically, we analyze probabilistic forwarding with coded packets on two
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network topologies: binary trees and square grids. For trees, our analysis shows that

for fixed k, the expected total number of transmissions increases with n. On the other

hand, on grids, simulations show that a judicious choice of n significantly reduces the

expected total number of transmissions needed for a near-broadcast. It is somewhat

counter-intuitive that introducing additional packets in a network can reduce the number

of transmissions, but we are able to explain this phenomenon on grids using ideas from

percolation theory and ergodic theory. This indicates a benefit in introducing redundancy

in the form of coding into the probabilistic forwarding mechanism on grids, but not on

trees. The benefit is in terms of a reduction in the overall expenditure of energy in the

network to achieve a near-broadcast.

Finally, in the last part of the thesis, we provide an analysis of the performance of

the proposed algorithm on random geometric graphs (RGGs). RGGs are used widely to

model ad-hoc network deployments. The randomness in the underlying network topology

presents additional challenges in the analysis. Our treatment of the problem indicates

a trend similar to that on grids: for dense RGGs, with a carefully chosen value of n, it

is possible to reduce the expected total number of transmissions while ensuring a near-

broadcast, in comparison to probabilistic forwarding with no coding. Our analysis for

RGGs involves ideas from Poisson point processes, percolation theory and ergodic theory.

The conclusion we draw from our analysis for trees, grids and RGGs, additionally

supported by simulations on several other network topologies, is that on well-connected

graphs, there is a benefit to introducing coded packets with probabilistic forwarding.
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Chapter 1

Introduction

Network sizes have grown in recent years owing to cheap electronics available in the mar-

ket. Ad-hoc networks which have no centralized infrastructure have become ubiquitous.

The main example is that of wireless sensor networks (WSNs) which have been deployed

for applications ranging from agriculture, industry and military reconnaissance.

The advent of the Internet of Things (IoT) in recent times has introduced a new

dimension to the study of ad-hoc networks. Our everyday life is replete with numerous

IoT devices and sensors whose primary function is something other than communication.

For example, sensors and actuators in a car are geared towards control and movement of

the car. These are integrated into a network to provide additional functionality, such as

self-driving ability. Such scenarios limit the amount of energy available to the IoT node

for communication.

More generally, nodes in an ad-hoc network can be thought of as functioning with the

following constraints.

• Energy constraint: Ad-hoc networks are equipped with nodes which have a lim-

ited battery capacity. Similarly, nodes of a WSN deployed in a field are typically

energy harvesting nodes. These have limited energy to expend for transmission of

data packets.

• Computational constraint: As mentioned before, nodes in an ad-hoc network

have a functionality that is different from communication. Owing to this and the

1



Chapter 1. Introduction 2

energy constraint, nodes are usually not equipped with computational resources

which can aid in communication.

• Knowledge constraint: The nodes in the network have no knowledge of the

overall network topology. Additionally, they do not have any information about

their relative position in the network.

Furthermore, in the case of IoT networks, the sheer number of devices form a large and

dense network with heterogeneous nodes. In such scenarios, erstwhile algorithms for

information dissemination and communication need to be rethought to account for these

new challenges.

Broadcast mechanisms are vital to disburse key network-related information in such

ad-hoc networks. For example, updating the sensing parameters in WSNs and over-the-

air programming of IoT nodes are typically done through a broadcast mechanism. These

broadcasts are usually initiated from a single node in the network which is easily accessible

(a mobile phone, say).

Our primary goal is to disseminate information from the source node in a distributed

network with minimal energy expenditure. In this thesis we propose and analyze a broad-

cast algorithm which conforms to the constraints imposed on the individual nodes. Before

we describe the algorithm, we first present a case study of various practical deployments

of WSNs which elucidate the constraints on the individual nodes.

1.1 Case study: Deployments of wireless sensor net-

works

In 1965, Gordon E. Moore predicted a doubling of the number of components per in-

tegrated circuit annually, in his paper [2]. One of the leading contributors towards this

increase in the past four decades has been the rapid progress in the communication in-

dustry, as evidenced by numerous articles (see e.g., [3–5]). In [6], the authors comment



Chapter 1. Introduction 3

“At the end of 2008, more than 4 billion mobile phones were estimated to exist world-

wide, representing more than 60% of penetration. Another emerging market of wireless

sensor networks will tend to grow significantly in the next years which can already reach

approximately 120 million of remote units by 2010 ”

The evolution of micro-electro-mechanical systems (MEMS) technology brought about

easy and fast production of cheap sensor nodes. Coupled with communication technolo-

gies such as Bluetooth, ZigBee, WiFi, RFID, Visible Light Communication etc. during

the turn of the century, sparked a revolution in the state of the art in WSNs. In re-

cent times, they have been deployed ubiquitously for applications ranging from military

reconnaissance, environment monitoring, health tracking etc. (see e.g., [7]). We pro-

vide examples of few such deployments which bring out the challenges associated with

information dissemination in these wireless sensor networks.

In [8] ,the authors develop an online microclimate monitoring and control system for

greenhouses. They field-test the system in a greenhouse in Punjab, India, evaluating its

measurement capabilities and network performance in real time. The authors in [9] use

image processing sensor nodes to monitor a vineyard for different types of deficiency, pests

or diseases. Once pests are detected, their location has to be communicated rapidly for

quick isolation. In [1], the authors monitor trees in a 13× 40 date-palm orchard in Israel

by deploying sensor nodes. The nodes form a network with a central coordinator which

collects the data. An illustration from their paper is shown in Fig. 1.1.

Similar technological solutions using sensor networks for agriculture have been de-

veloped for irrigation in [10–12]. [13] provides a review of specific issues and challenges

associated with deploying WSNs for improved farming. Most of these networks are spa-

tially distributed and the individual nodes are typically wireless nodes deployed to form a

network. Moreover, since farming is done in a pattern with prescribed gaps between rows

of crops, one can expect that the associated sensor network deployed also has a regular

lattice kind of topology.

Environment monitoring has been another area where WSNs have been widely used.

The authors in [14] provide an extensive review of some of the practical implementations.
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Figure 1.1: Sensors deployed in a date-palm orchard of 520 trees. Picture taken from [1].

In [15, 16], the authors describe wireless sensor networks for flood warning. They collect

water level measurement data on remote locations that are covered by surface waters,

either by flooding or seasonal environmental impacts. Places affected by floods frequently,

may be inaccessible and hence the sensor nodes deployed in such regions need to be

robust and durable. In [17], energy-harvesting nodes are employed to make the nodes

self-sustaining. The authors in [18] provide a review of the state-of-the-art in energy-

harvesting WSNs for environmental monitoring applications. Air quality monitoring in

industrial and urban areas using Zigbee WSNs has been proposed and implemented in

[19]. IoT solutions with low-cost systems and a large number of sensors have also been

proposed in [20]. Zigbee and IoT standards restrict the devices to be low-power, low data

rate, and within close proximity of each other. Nodes are typically arranged in a mesh

network when using these technologies.

In recent times, a diverse set of applications in the indoor environment which employ

WSNs have cropped up. The IoT framework has further bolstered such applications due

to its ease of adaptability and implementation. As part of Industry 4.0, supply chain
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management and smart logistics have adopted information and communication technolo-

gies to improve on the efficiency while incurring minimum cost overhead. [21] provides a

review of different works that have gone into streamlining the logistics industry includ-

ing package transportation, warehousing, loading/unloading, distribution etc. Design of

intelligent warehouses and their management has been automated (see e.g., [22–24]) and

there are companies similar to Digiteum [25] which offer solutions to make the warehouses

smarter. A combination of different technologies are typically used in these applications.

Additionally, to optimize the space in the indoor environments, sensors are deployed in

close proximity of one another resulting in dense networks.

From these use cases, it is clear that WSNs form large and dense networks with the

individual nodes being energy constrained with minimal computational resources. They

are decentralized and are sometimes arranged in a regular lattice-like underlying topology.

Information dissemination algorithms when deployed on such networks, need to account

for these constraints on individual nodes.

1.2 Motivation

A typical motivating example that one can have in mind for the purpose of this thesis is

a network of temperature or humidity sensors that are deployed in a field as in Fig. 1.2.

These could be used to monitor the soil and weather conditions to take appropriate control

actions when necessary. Wireless sensor networks (WSNs) in such outdoor environments

typically consist of energy-harvesting nodes. Since these are spatial networks over a large

geographical area, they have a central station which is easily accessible; possibly even a

mobile phone. Call this the source s. Network-critical information, such as the sensing

frequency, or the firmware are updated from time to time in these networks. Dissemination

of such information to all the other nodes in the network happens through a broadcast

mechanism.

A natural broadcast algorithm is flooding, wherein a node forwards every newly re-

ceived packet to all its one-hop neighbours. However, a node might receive the same

packet from multiple neighbours resulting in wasteful transmissions. Moreover, flooding
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Figure 1.2: Sensor nodes deployed in a field. Node s is the source.

is also known to result in the ‘broadcast-storm’ problem [26]. In short, although the

flooding mechanism is simple and easy to implement, there is an excessive number of

transmissions in the network, resulting in a high energy expenditure.

For the applications that we are interested in, such a broadcast algorithm is not

feasible. To adhere to the constraints mentioned in the previous section, any broadcast

algorithm that is proposed needs to have the following characteristics:

• Completely distributed: The nodes in the network do not have any knowledge of

the network topology. Owing to this, they need to make decisions about forwarding

packets independently of other nodes. Moreover, trying to learn the network struc-

ture involves additional transmissions which is undersirable. Thus, the broadcast

algorithm needs to be completely distributed and decentralized.

• Minimal energy consumption: A large part of the energy available for com-

munication in a node is utilized while transmitting information. Minimizing the

energy consumption is equivalent to minimizing the number of transmissions in the

network. Thus, the broadcast from the source should reach all the nodes in the

network with minimal number of transmissions.
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• Limited computation: The broadcast algorithm must impose minimal computa-

tional burden on the individual nodes.

• Finite execution time: On a network with a finite (but possibly large) number

of nodes, the broadcast algorithm should terminate in finite time.

Probabilistic forwarding (or probabilistic retransmission) as a broadcast mechanism,

has been proposed in the literature (see [27]) as an alternative to flooding. Here, each node,

on receiving a packet for the first time, either forwards it to all its one-hop neighbours

with probability p or takes no action with probability 1 − p. While it is evident that

probabilistic forwarding uses lesser number of transmissions compared to flooding, it has

the drawback that a particular node in the network may not receive a packet, and hence,

is unable to obtain the information from the source.

In this thesis, we propose to introduce additional coded packets along with probabilis-

tic forwarding in order to alleviate this problem. These are defined in the next section.

Error / erasure correction capability of the code is used to guard against unavailability of

a packet at a node due to probabilistic forwarding. While it might seem that introducing

such coded packets increases the number of transmissions in the network, we will show

the following very counter-intuitive result. On most well-connected graphs, such as grids

and random geometric graphs (in the super-critical region), probabilistic forwarding with

coding leads to a decrease in the number of transmissions as compared to the case with

no coding for carefully chosen values of the number of coded packets and the forwarding

probability. However, this is not true in the case of broadcasting on trees, i.e., coding is

not beneficial in terms of the number of transmissions required for a broadcast on trees.

Our main goal in this thesis is to analyze the proposed mechanism on dense random

geometric graphs since these are used to model ad-hoc networks. In the process, we find

that understanding the mechanism on deterministic graph topologies such as trees and

grids is essential. Random geometric graphs are locally tree-like when the intensity of

points is low. When the intensity is high the probabilistic forwarding mechanism exhibits

similar trends as of a grid. We will see that understanding our proposed mechanism on

these graphs provides us techniques and intuitions necessary to explain the behaviour of
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our mechanism on random geometric graphs.

In Section 1.3, we include a brief review of the literature which tackle similar problems

or have similar broad motivation as us.

1.3 Related Work

Algorithms for broadcast over ad-hoc networks have garnered considerable attention in

the past. We refer the reader to [28], [29] and [30] and the references therein for a review

of the broad categories of algorithms employed for broadcasting. We further supplement

this list with references relevant to our work here. The broadcast algorithm proposed and

analyzed in this dissertation is an amalgamation of probabilistic forwarding along with

encoding of packets at the source. In the following, we highlight relevant literature from

these two areas.

1.3.1 Coding based approaches

Network coding

Network coding has been used for efficient data dissemination in wireless networks in

[29–34]. In [31], the authors propose random linear network coding (RLNC) for the mul-

ticast problem and give bounds on the probability that all the receivers are successful in

obtaining the packets. The authors in [33] compare the number of transmissions in the

RLNC based approach with that of store-and-forward approaches (which includes prob-

abilistic forwarding) on a circular network topology. Network coding schemes are shown

to be energy-efficient. Similar deductions are made via simulations in [34] for employing

network coding in a medical sensor network. In [32], the authors provide transmission

strategies for universal recovery and arrive at necessary and sufficient conditions on the

number of transmissions required using network coding. However they assume complete

knowledge of the network topology at every node.

Our work is closest in spirit to that in [29], where the authors have a similar motiva-

tion as ours, namely, to propose a low-complexity distributed broadcast algorithm, with
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nodes having no prior knowledge of the network topology. Moreover, similar to our con-

siderations, their figure of merit is energy efficiency which is quantified using the number

of transmissions required for the broadcast. They employ network coding and propose

a decentralized algorithm that improves upon the number of transmissions in flooding

by a constant factor. While our work also addresses similar questions, the results in the

two works are not directly comparable. In the setting of [29], all the nodes in the net-

work have messages to broadcast, making the network coding approach attractive. On

the other hand, in our setting, only a single source node has messages that need to be

broadcast.

Other coding schemes

Unlike network coding schemes, in our work, packets are encoded only at the source

before transmission. The class of codes that we propose, includes among others, fountain

codes which have been used widely in broadcast mechanisms for ad-hoc networks. This

is primarily because they form a convenient alternative to the ARQ (Automatic repeat

request) protocol. In the ARQ scheme, an acknowledgement (ACK) needs to be sent

every time a packet is received. By employing fountain codes, a node is required to send

an ACK less frequently, thus saving on energy.

The authors in [35] employ fountain codes for broadcasting in vehicular networks.

However, unlike our setting, all the nodes are in a star topology and receive transmissions

from the source through erasure channels. In [36, 37], the authors use Luby transform

(LT) codes, a special case of fountain codes, which reduces the complexity of encoding and

decoding at the network nodes. The LT encoding is done by randomly selecting d packets

from n packets and doing an XOR of these packets to form a single encoded packet.

The authors in [36] propose to employ LT codes in conjunction with transmission over

a source-independent backbone network. They show via simulations that this approach

not only reduces the number of transmissions required for flooding, but also reduces the

packet delay. The variable d is an integer which is chosen according to a distribution. In

[37], the authors propose a new distribution on d which further brings down the delay
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and the number of transmissions. However, both these approaches require the knowledge

of a dominating set which is a subset of nodes of the network such that every node in the

network is either in this set or adjacent to a node of this set. Finding a dominating set

is computationally expensive. In [38], the authors construct novel codes called rateless

online MDS (ROME) codes for wireless broadcasting. They are shown to have lesser

coding redundancy and number of transmissions as compared to LT codes. However,

they exploit feedback information from the receivers.

1.3.2 Probabilistic forwarding based approaches

Probabilistic forwarding as a broadcast mechanism (see e.g., [27]) has been proposed in the

literature as an alternative to flooding. Here, each node, on receiving a packet for the first

time, either forwards it to all its one-hop neighbours with probability p or takes no action

with probability 1 − p. An excellent summary of the recent literature on probabilistic

broadcast mechanisms is provided in [39, Chapter 3].

GOSSIP algorithm and variants

Probabilistic forwarding, as described in Section 1.2, has also been referred to as the

GOSSIP1(p) algorithm in [40]. The authors claim a 35% reduction in the transmis-

sion overhead as compared to flooding. Further, several variants of the probabilistic

GOSSIP1(p) protocol are described and heuristics and simulation results are provided for

improving flooding and routing mechanisms in networks. The variants include:

• GOSSIP1(p, k) - Transmit with probability 1 upto k hops from the source, followed

by probabilistic forwarding with probability p by nodes further away.

• GOSSIP2(p1, k, p2, n) - The first two parameters are as in the GOSSIP1(p, k) pro-

tocol. The new features are p2 and n; the idea is that the neighbours of a node

with fewer than n neighbours gossip with probability p2 > p1. That is, if a node has

fewer than n neighbours, it instructs its immediate neighbours to broadcast with

probability p2 rather than p1.
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• GOSSIP3(p, k,m) - Here again, the first two parameters correspond to the GOSSIP1

protocol. A node that originally did not broadcast a received message, but then

did not get the message from at least m other nodes within some timeout period,

broadcasts the message immediately after the timeout period.

There have been numerous other works, for example see [41–45], which propose improve-

ments on the GOSSIP protocol. In [42], the authors target a similar problem as ours:

achieve a high degree of network coverage with limited number of transmissions. They

even employ very similar analytical techniques based on continuum percolation to charac-

terize two gossip algorithms: global gossip and distributed gossip. However, they assume

some knowledge of the average degree of the random planar network at every node of the

network. The authors in [46] propose a novel approach to combine tree-based and gossip

protocols in order to achieve both low message complexity and high reliability. Hypergos-

siping has been proposed in [43] to overcome problems of connectivity in mobile ad-hoc

networks. In [45], the authors propose the smart gossip protocol which aims to adaptively

set the forwarding probability at each node by quantifying the “importance” of each node

for achieving dissemination. However, all of these works evaluate the proposed algorithm

using extensive simulations and lack sound analytical characterization.

Choice of forwarding probability

A significant portion of the literature on probabilistic forwarding dwells upon setting the

forwarding probability based on different notions. We have a similar motivation in this

thesis as well. In the following we highlight a few such notions.

• Neighbour based approaches: In these schemes, the forwarding probability is

decided based on the number of neighbours or the density of nodes in a region.

The main rationale behind this approach is that, higher the density or the number

of one-hop neighbours, lower the forwarding probability. In [47], the authors use

a forwarding probability proportional to the inverse of the number of neighbours

a node has. The authors in [48, 49] use a similar idea but with additional deter-

ministic corrective measures to improve on the probabilistic scheme. A dynamic
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adaptive scheme to set the forwarding probability is discussed in [50] for mobile

ad-hoc networks and is compared and shown to be better than fixed probability

schemes via simulations. Slightly more sophisticated algorithms are explored in [51]

and [52] which use a neighbour coverage-based probabilistic rebroadcast protocol by

introducing a delay for rebroadcast. However this involves additional resources at

each node in the network.

• Area/distance based approaches: In area-based schemes, the forwarding prob-

ability is set based on an estimate of the additional area that will be covered by a

node if it transmits. This additional area is estimated based on either the number of

copies a node receives or the distance from the node whose transmission it receives.

In [53], three algorithms are proposed based on these ideas: Area Coverage-based

Probabilistic Forwarding (ACPF), exploits the overlapping of transmission areas be-

tween neighbouring nodes to set a higher value of the forwarding probability when

the coverage areas is large. The second scheme, referred to as Copies Coverage-based

Probabilistic Forwarding (CCPF), uses the number of duplicate request messages

overheard during a random time interval to determine the forwarding probability,

p. As the number of the overheard duplicate request messages increases, the for-

warding probability of the node decreases. The third scheme, referred to as Area

and Copies Coverage-based Probabilistic Forwarding (ACCPF), takes advantage of

both the transmission area coverage and the number of the overheard duplicates of

the same request to determine the value of p. In [54], a technique similar to CCPF

is used to infer the density of nodes in a neighbourhood and thus choose a smaller

forwarding probability if the node is in a dense region.

In [55], each node chooses a forwarding probability which is proportional to the

distance from which it received the packet. The relative distances between nodes are

assumed to be known beforehand at each node. Variations of this algorithm where

the probability used is proportional to some k-th power of the relative distance

between nodes is discussed in [56].
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• Interference based schemes: In this scheme, nodes in the network choose a

forwarding probability based on the signal strength with which they receive pack-

ets. For example, in [57], the nodes obtain a signal-to-interference-plus-noise ratio

(SINR) value as measured at the physical layer. If the SINR is low, it means that

surrounding nodes may not have received the packet and hence the node chooses a

higher probability of retransmission. In [58], the gossip probability is chosen based

on the received signal strength (RSS). RSS is an indication of the channel quality,

and hence nodes transmit with higher probability when the channel is good.

There are numerous other approaches which combine different methods to set the forward-

ing probability. The interested reader is referred to the survey paper [59] and Chapter 3

of [39]. However, there are two main differences between these works and ours. Firstly,

such schemes require some knowledge about the network topology either in terms of the

number of neighbours or distance from a nearest node etc., which we do not assume in our

work. Secondly, and more importantly, most of these are simulation based studies with

no analytical backing. Our aim in this thesis is to provide a robust analytical framework

to the algorithm we propose which can perhaps be extended to analyze some of these

algorithms as well.

Other variations of probabilistic forwarding

The authors in [60] map randomized broadcast mechanisms to percolation on networks,

which is the approach we take in this thesis as well. They, however, use directional

antennas to reduce the transmission overhead and map it to a bond percolation problem.

In [61], the authors propose Robust Probabilistic Flooding mechanism which takes into

account the energy-harvesting nodes and the times they are active. The works in [62] and

[63] consider broadcast problems on topologies similar to ours but a different mechanism.

In [62], the authors model each edge of a tree as a binary symmetric channel and aim to

recover the data present at the root of the tree using information from the nodes at level

`. Similar considerations are discussed on an infinite directed acyclic graph with the form

of a 2D regular grid in [63].
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1.3.3 Situating our work

Our main goal is to propose a simple, distributed, light-weight broadcast algorithm for

ad-hoc networks. We combine ideas from both the coding based approach as well as the

probabilistic forwarding approach. More specifically, we introduce redundancy in the form

of coded packets into the probabilistic forwarding mechanism. The randomness brought

about by the probabilistic forwarding algorithm can be compensated by the structural

properties of the code we employ. To the best of our knowledge, we are the first ones to

propose such an algorithm. Moreover, it should be highlighted here that, it is the analysis

of the proposed algorithm which is far more valuable to the field, since many models

which have been proposed lack a solid theoretical foundation.

1.4 Organization of this thesis

The dissertation is divided into three parts. In the first part, we describe the probabilistic

forwarding mechanism with coded packets. We explain our problem setup and establish a

formal problem statement (Chapter 2). Simulations of the proposed broadcast mechanism

are carried out on different graph structures (Chapter 3) and some initial deductions are

drawn from the observed behaviour (Chapter 4).

The second part of the thesis analyzes the proposed broadcast mechanism on deter-

ministic graphs. The focus is on trees (Chapter 5) and grids (Chapter 6). The analysis on

trees involves concentration results for random variables with Binomial distribution and

the analysis on grids is via percolation theory and ergodic theory.

In the last part of the thesis, the probabilistic forwarding mechanism is analyzed

on random graph topologies. Random geometric graphs (RGGs) are a class of random

graphs which are used to model practical deployments of ad hoc networks such as those

discussed in Section 1.1. The theoretical characterization of the probabilistic forwarding

mechanism on RGGs (in Chapter 7) builds upon the ideas from the analysis on grids.

Ideas from Poisson point processes, continuum percolation and ergodic theory are used.

In Chapter 8, the probabilistic forwarding mechanism is investigated on random regular
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graphs (RRGs). Preliminary results, using a generating function approach, are obtained

to justify the trends on these graphs in a restricted regime.

The thesis concludes with a chapter summarizing the contributions and exploring some

directions that can be pursued in the future (Chapter 9). The Appendix collects some

auxiliary results needed in Parts II and III of the thesis.

Some general notations

Symbol Meaning

R Set of real numbers

Z Set of integers

[n] {1, 2, · · · , n}

ν(·) Lebesgue measure on R2

ks Data packets that source s intends to broadcast

k Minimum packets to be received for correct decoding

n Number of coded packets

pk,n,δ Minimum forwarding probability

τk,n,δ Expected total number of transmissions

Rk,n Nodes that receive at least k out of the n coded packets- successful

receivers

Rk,n Number of successful receivers

Γm
[−m

2
, m

2

]2
for m ∈ R. Square area around the origin in R2

Λm

[
−m−1

2
, m−1

2

]2 ∩ Z2 for m odd integer. Discrete grid around the

origin.
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Problem Setup
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Chapter 2

Problem setting

Figure 2.1: Graph G with source s.

Consider a connected graph G = (V,E), where V is the vertex set with N vertices

(nodes) and E is the set of edges. Since we operate in a wireless medium, the nodes

adjacent to vertex u in the graph are those that can receive a transmission from u. It

is assumed that when a node broadcasts a packet, all its one-hop neighbours receive the

packet without any errors. In other words, the edges of G are all noiseless communication

links. A particular node is distinguished as the source s in the graph, which possesses

17
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information that is to be broadcast.

Coding mechanism: The source s has ks message packets which need to be broadcast

in the network. The ks message packets are first encoded into n coded packets such that,

for some k ≥ ks, the reception of any k out of the n coded packets by a node suffices

to retrieve the original ks message packets. Examples of codes with this property are

Maximum Distance Separable (MDS) codes (k = ks), fountain codes (k = ks(1 + ε)

for some ε > 0) etc. which are used in practice. We assume that all the required

encoding/decoding operations are carried out over a sufficiently large field, so that codes

with the necessary parameters exists.

Transmission scheme: The n coded packets are indexed using integers from 1 to n,

and the source transmits each packet to all its one-hop neighbours. All the other nodes in

the network use the probabilistic forwarding mechanism: when a packet (say, packet #j)

is received by a node for the first time, it either transmits it to all its one-hop neighbours

with probability p or does nothing with probability 1 − p. This decision by a node to

forward packet #j is made independently of the other nodes and other packets. The

node ignores all subsequent receptions of packet #j, irrespective of the decision it took

at the time of first reception. Packet collisions and interference effects are neglected.

In this thesis, we will refer to the broadcast scheme described here as the probabilistic

forwarding or the probabilistic retransmission mechanism without explicit reference to

the coding mechanism. It is to be understood that the scheme operates on the n coded

packets.

2.1 Problem formulation

LetRk,n be the nodes, including the source node, that receive at least k out of the n coded

packets. Owing to our coding scheme, it is these nodes which can decode the information

contained in the ks message packets transmitted by the source. We call these successful

receivers and denote the number of such nodes by Rk,n. An example illustration with

k = 2 and n = 3 is shown in Fig. 2.2.
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(a) Packet 1 (b) Packet 2

(c) Packet 3 (d) Successful receivers (R2,3)

Figure 2.2: Illustration of probabilistic forwarding with 3 coded packets. Here the yellow

nodes ( ) receive the packet from the source and transmit it. The blue nodes ( ) receive

the packet but do not transmit it. The red nodes ( ) do not receive the packet. The

green nodes ( ) are those that receive at least 2 out of the 3 coded packets. They are the

successful receivers.
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Since we are interested in a broadcast scheme, we want the expected fraction of suc-

cessful receivers to be close to 1. This, we deem a “near-broadcast”. More formally, given

a δ ∈ (0, 1), let pk,n,δ be the minimum forwarding probability p for a near-broadcast, i.e.,

pk,n,δ := inf

{
p

∣∣∣∣ E [Rk,n

N

]
≥ 1− δ

}
. (2.1)

For a fixed (deterministic) underlying graph, the expectation above is with respect to the

randomness in the probabilistic forwarding mechanism. However, for random graphs, the

randomness in the graph should also be considered. The broadcasting problem only makes

sense if the underlying graph is connected. On random geometric graphs (RGGs), which

are of primary interest to us, we take the connected component containing the source

node as the graph, G, over which we employ our broadcast algorithm. In Chapter 8, we

discuss in brief, probabilistic forwarding on random regular graphs (RRGs). Here again,

we consider the connected component of the source as the graph over which probabilistic

forwarding is implemented. In both these cases, the value ofN is the total number of nodes

within this component of the source, which is also a random quantity. The expectation

above is then, not just with respect to the probabilistic forwarding mechanism, but is also

over the realizations of this graph, G.

On other random graph models, the expectation in (2.1) needs to be defined on a case-

by-case basis. For example, on models with a fixed number of vertices, the expectation

can be taken over a probability distribution on all the connected realizations of the graph

in addition to the randomness in the probabilistic forwarding mechanism. This could, for

instance, be achieved by conditioning on the event that the random graph is connected.

The quantity pk,n,δ in (2.1), more plainly, is the minimum probability with which each

node in the network needs to forward a packet, so that a large (expected) fraction of nodes

receive the information from the source. The performance measure of interest, denoted by

τk,n,δ, is the expected total number of transmissions across all nodes when the forwarding

probability is set to pk,n,δ. Here, it should be clarified that whenever a node forwards

(broadcasts) a packet to all its one-hop neighbours, it is counted as a single (simulcast)

transmission.
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Our aim is to determine, for a given k and δ, how τk,n,δ varies with n, and the value

of n at which it is minimized (if it is indeed minimized). To this end, it is necessary

to first understand the behaviour of pk,n,δ as a function of n. Our primary interest is to

characterize the probabilistic forwarding mechanism on random geometric graphs (RGGs)

which are described in Chapter 3. These are used to model ad-hoc networks such as those

in Section 1.1.

The quantities Rk,n, pk,n,δ, τk,n,δ etc. are all, of course, functions of the underlying graph

G as well, but for simplicity, we usually suppress this dependence from our notation. We

use Rk,n(G), pk,n,δ(G), τk,n,δ(G) etc. whenever the dependence on G needs to be made

explicit.

2.2 Problem variants

In this section we discuss variants of the proposed probabilistic forwarding mechanism

with coded packets. We discuss their feasibility and additional assumptions required on

the individual nodes.

2.2.1 Coding at intermediate nodes

A natural light-weight extension to the algorithm proposed here is when nodes other than

the source are also allowed to encode packets. A node upon receiving at least k out of

the n packets can decode the information contained in the ks source packets. This node

can now act as a secondary source. It can encode the ks packets again and transmit them

further.

A few challenges that arise in this approach are to decide which nodes act as secondary

sources and the forwarding probability that nodes should choose. Nodes which are near to

the source receive a large number of packets and can act as secondary sources. However,

regarding all of them as secondary sources will be wasteful. A possible rule of thumb

to overcome this is to stipulate that, only those nodes which receive exactly k out of

the n packets act as secondary sources. Such nodes can be expected to be present at the
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boundary of the cluster of successful receivers. In other words, nodes which receive exactly

k out of n packets can be expected to have neighbours which receive less than k packets

(or which are not successful). Additionally, one can reduce the forwarding probability of

these secondary sources. Naturally, this is a harder problem to analyze, and we believe

that the analysis in this thesis will prove to be a stepping stone in understanding such

algorithms.

2.2.2 Varying forwarding probability

Another variation of the proposed mechanism is to have different forwarding probabilities

at different nodes. A node could transmit a packet based on its distance from the source.

This requires a knowledge of the distance from the source to be made available at the node.

A similar idea has been proposed in [64] for vehicular networks, where the authors show,

via extensive simulations, that a well-chosen forwarding probability reduces the delay

in the network while having a high success probability of broadcasting. However, they

assume knowledge of the distance from the source and local neighbourhood information.

An easy way to make this information available at the node is to include a counter in the

header of each packet which gets updated as the packet traverses the network.

On trees, where there is a unique path from the source to any node in the graph,

including such a counter provides an accurate value of the distance from the source at the

node. The node can choose an appropriate forwarding probability with this knowledge.

We discuss this in more detail in Section 9.1.3. On more well-connected graphs such as

lattice structures, a packet from the source may reach a node through a long convoluted

path. Then, the value of the distance counter is not accurate which reflects in the node’s

choice of the forwarding probability. This results in additional transmissions in the system.

Multiple packet transmissions can be exploited to obtain better estimates of the dis-

tance of a node from the source. Inferring the minimum distance from the source, in a

lattice topology, can also be viewed through the lens of first and last passage percolation

(see e.g., [65], [66]). These result in interesting questions but we do not discuss them in

this thesis.



Chapter 2. Problem setting 23

Alternately, a node can decide the forwarding probability based on the number of

copies it receives of a particular packet. Reception of the same packet from multiple

neighbours indicates that the node has numerous neighbours. Its transmission of the

same packet may not help in increasing the number of receivers. While this is a feasible

approach, it requires the node to keep track of all the nodes from which it received a

packet.

2.2.3 Other variants and comments

Several other variants of the probabilistic forwarding protocol can be conceived and im-

plemented. A few are listed below.

• Maintain a list of packets that have been received but not forwarded and choose one

among them to transmit. Additionally, a node could use more sophisticated means

of deciding which received packets it should forward.

• Learn the local network structure based on packet receptions and tune the forward-

ing probability accordingly.

• Broadcast using directional antennas in a direction opposite to the one received

from.

These algorithms, however, require either greater knowledge of the network topology,

or they demand additional resources such as buffers or computation capability at the

individual nodes. This does not align with our idea of a completely distributed, energy-

efficient broadcast algorithm.

2.3 Communication aspects

In this section, we consider some of the issues involved in the practical implementation

of the proposed probabilistic forwarding algorithm with coded packets. With numerous

packets traversing the network, packet collisions are bound to happen. These interference

effects need to be handled. Moreover, the channel between adjacent nodes could be error
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prone resulting in a transmission being lost. Such channel outages need to be addressed

as well.

When there are multiple packets in the network, interference effects can be avoided

by separating the transmissions either in the frequency domain or the time domain.

• In the frequency domain, a possible solution is for nodes to transmit on orthogo-

nal sub-carriers of an Orthogonal Frequency Division Multiplexing (OFDM) signal.

Alternately, each packet could be transmitted on a different orthogonal sub-carrier.

The latter scheme, however, limits the number of packets that can be transmitted

concurrently.

• In the time domain, a scheduling algorithm has to be implemented to avoid concur-

rent transmissions which might interfere. A schedule must not have a pair of nodes

that are within two hops from each other in the same slot.

From a graph theoretic perspective, both these solutions can be viewed as vertex-colouring

problems on the underlying graph G = (V,E). The problem of broadcast scheduling

captures this from a graph colouring setting and has a vast literature (see e.g., [67, 68]).

Two vertices u, v ∈ V can have the same colour if and only if both of the following

conditions hold.

• e = (u, v) /∈ E.

• There does not exist a vertex x such that e1 = (u, x) ∈ E and e2 = (x, v) ∈ E.

This problem has been shown to be NP complete in [69]. Several centralized and dis-

tributed algorithms have been proposed in the literature for obtaining a schedule through

vertex-colouring (see [68, Table 1]). A heuristic, but centralized solution in [70], called

RAND, is known to give very efficient slot schedules. In [71], the authors introduce

DRAND, a distributed, robust and scalable implementation of RAND which is also very

simple and easy to implement in practical systems. Moreover, it does not require clock-

synchronization or global information. Another distributed algorithm called distributed

scheduling using topological ordering (DSTO) has been proposed recently in [68]. The
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algorithm is scalable in a fully distributed manner and reduces running time and message

overhead. Once a vertex-colouring is obtained, it can be used to implement the above

strategies by associating a colour with a particular sub-carrier frequency band or a partic-

ular time slot as required. These assignments could be done during the time of network

deployment with an associated one-time cost.

When links between adjacent nodes are not ideal noiseless links, the broadcast infor-

mation received could be distorted. Knowledge of the channel state information (CSI)

could be used to further regulate the forwarding probability at every node to overcome

channel outages. Each link could be modelled to be either in a ‘good’ or a ‘bad’ state based

on CSI statistics. The problem then reduces to carrying out the probabilistic forwarding

mechanism on a random subgraph of the original network. The techniques necessary to

analyze this scenario are more sophisticated than those used in this thesis, and form a

possible future research direction.

For the ease of analysis, in this thesis, we think of transmissions to be happening one

after the other in the network. In other words, at any time, one node in the network

transmits a single packet. We can make this assumption since our analysis does not

account for the time delay for a packet to traverse from the source to any other network

node. Moreover, with this assumption, packet collisions are avoided. It is to be highlighted

that this is only for convenience in our analysis, and any practical implementation of the

algorithm will require an appropriate scheduling scheme as discussed before.
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Simulations

The purpose of this chapter is two-fold. Firstly, it serves as a platform to introduce

and formally define the network topologies that we will discuss as part of this thesis.

Secondly, simulations on these different underlying network topologies provides an initial

understanding of the performance of the probabilistic forwarding mechanism with coded

packets.

The required scripts for carrying out the simulations of this chapter are made available

through a Github repository [72].

3.1 Random geometric graphs

Our main interest is to characterize the probabilistic forwarding mechanism on random

geometric graphs since these are used widely to model ad-hoc networks. We start by

giving a procedure to construct them.

A random geometric graph (RGG), Gm, on a finite area Γm :=
[−m

2
, m

2

]2 ⊂ R2 is de-

fined using two parameters: the intensity λ and the distance threshold r. It is constructed

as follows:

• Step 1: Sample the number of points, N , from a Poisson distribution with mean

λν(Γm). Here, ν(·) is the Lebesgue measure on R2. Therefore, N ∼ Poi(λm2).

• Step 2: Choose points X1, X2, · · · , XN uniformly and independently from Γm.

26
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Figure 3.1: A random geometric graph (RGG) with λ = 4 and r = 1 on Γ5.

These form the points of a Poisson point process (see [73, Section 2.5]) Φ, and

constitute the vertex set of Gm.

• Step 3: Place an edge between any two vertices which are within Euclidean distance

r of each other.

It suffices to study RGGs by keeping one of the parameters fixed. In our treatment,

we will fix the distance parameter r to be equal to 1, and study various properties as a

function of the intensity, λ. Notice that the total number of nodes in the network is a

random number given by N = Φ(Γm). An illustration of an RGG with λ = 4 and r = 1

is provided in Fig. 3.1.

We will assume that a node is present at the origin 0 = (0, 0) ∈ R2 which acts as the

source and initiates the broadcast. Since we are interested in a broadcast problem, we

limit our network to the nodes which are present within the component of the origin and

the edges connecting them. Call this graph G0
m. The nodes within this component are

the nodes which are reachable from the source.
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Figure 3.2: Simulations on a random geometric graph generated on Γ101 with intensity

λ and distance threshold r = 1. Probabilistic forwarding done with k = 20 packets and

δ = 0.1

Simulations were performed on two RGGs, generated on Γ101 with intensity λ = 4.5

and 4. As stated before, the distance threshold parameter r was set to 1. The probabilistic

forwarding mechanism was carried out with k = 20 packets and n varying from 20 to 40.

The value of δ was set to 0.1. Twenty realizations of G0
m were generated and 10 iterations

of the probabilistic forwarding mechanism was carried out on each of the realizations.

The fraction of successful receivers was averaged over each iteration and realization of the

graph. This was used to find the minimum forwarding probability, pk,n,δ, required for a

near-broadcast, which is plotted in Fig. 3.2(a). The pk,n,δ values so obtained were further

used to find the expected total number of transmissions over the same realizations. The

expected total number of transmissions τk,n,δ, normalized by the number of points in Γm,

is shown in Figure 3.2(b).

Notice that the expected number of transmissions decreases initially to a minimum

and then increases. The point with n = k = 20 in both the plots corresponds to the prob-

abilistic forwarding mechanism with no coding. The initial decrease, till around n = 25,

indicates the benefit of introducing coding along with probabilistic forwarding. The num-

ber of coded packets, n, and the probability, pk,n,δ, corresponding to the minimum point

of Figure 3.2(b) are the ideal parameters for operating the network to obtain maximum

energy benefits while ensuring a near-broadcast.
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3.2 Lattices

Figure 3.3: 31× 31 grid.

The advantage brought about by the introduction of

coded packets with probabilistic forwarding is more

clearly seen in lattice structures. Here, we present

simulations on the square grid, the triangular grid

and the 3D cubic lattice.

The vertex set of an m×m square grid for odd m

is given by
[
− (m−1)

2
, (m−1)

2

]2

∩Z2 = Λm ∩ Z2. The

edge set is {(i, j)
∣∣ |i−j| = 1 where i, j ∈ Λm∩ Z2}.

Here, | · | indicates the `2 norm. An illustration of a

31×31 square grid is shown in Fig. 3.3. The source

is present at the origin 0 = (0, 0) ∈ Z2 which is the center of the grid. The total number

of nodes on the m×m square grid is N = m2.

Simulations on the 31 × 31 square grid are shown in Fig. 3.4. The probabilistic

mechanism was carried out with k = ks = 20 packets and δ = 0.1 and 0.05 and n

varying from 20 to 40 packets. As in the case of a RGG, the expected total number of
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Figure 3.4: Simulations on a 31 × 31 grid. Probabilistic forwarding done with k = 20

packets.

transmissions initially decreases to a minimum and then gradually increases indicating an

energy advantage associated with the addition of coded packets.
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Figure 3.5: Triangular grid.

The triangular grid can be thought of as the

graph with the vertex set being the same as the

square grid, Λm∩ Z2, but with additional edges be-

tween vertices i = (ix, iy) and j = (ix + 1, iy + 1)

for i, j ∈ Λm ∩ Z2. An illustration of the triangu-

lar grid is provided in Fig. 3.5. Since there are

far more edges on the triangular grid as compared

to the square grid, there are more paths from the

origin to any node in the network for a packet to

propagate. It is due to this reason that the forwarding probability required for a near-

broadcast on a triangular grid is lesser compared to that on a square grid of the same

dimensions as seen in Fig. 3.4(a) and 3.6(a).
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Figure 3.6: Simulations on a 31× 31 triangular grid. Probabilistic forwarding done with

k = 20 packets.

3.3 Trees

The advantage seen with respect to the expected total number of transmissions due to

the introduction of coded packets with probabilistic forwarding on RGGs and lattice

structures, is not replicated on tree-like structures. In this section, we consider rooted

trees in which the root is designated as the source. We provide simulation results which



Chapter 3. Simulations 31

Figure 3.7: A rooted binary tree of height H.

convey a very different story from that of the previous two sections.

A rooted binary tree of height H is the graph depicted in Fig. 5.1. The tree consists of

H levels, with the root node at level ` = 0, and for ` = 1, 2, . . . , H−1, each node at level `

having two children at level `+1. Thus, there are 2` nodes at level `, for ` = 0, 1, 2, . . . , H,

so that the total number of nodes in the tree is N =
∑H

`=0 2` = 2H+1 − 1. The root node

is taken to be the source node.
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Figure 3.8: Simulations on a binary tree of height H = 10. Probabilistic forwarding done

with k = 20 packets.

Simulations of the probabilistic forwarding mechanism with k = 20 message packets

encoded into n coded packets (n varying from 20 to 40) on a rooted binary tree of height

10 are shown in Fig. 3.8. Notice that the minimum forwarding probability necessary for a

near-broadcast decreases with increase in n as in the other graphs. However, the expected

total number of transmissions, τk,n,δ, does not show any decrease. It increases with n.

This means that even though there are additional coded packets which can assist in a

near-broadcast, transmitting them results in a larger number of transmissions. Therefore,
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coding along with probabilistic forwarding on trees does not help to save energy.

3.4 Other graphs

3.4.1 Hypercube

The d-dimensional hypercube has the vertex set V = {0, 1}d with edges (x, y) ∈ E if x

and y represented as binary strings differ in exactly one bit. The number of vertices is

N = 2d. Since each vertex has degree d, the number of edges is d2d−1.

Simulation of the probabilistic forwarding protocol with coded packets was carried out

on a d-dimensional hypercube with k = 20 packets and n varying from 20 to 40. The all

zeros vertex, 0 = (0, 0, · · · , 0) ∈ {0, 1}d was taken to be the source. The plots for pk,n,δ

and τk,n,δ are shown in Fig. 3.9. The plot for the expected number of transmissions seems
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Figure 3.9: Simulations on a hypercube with 2d nodes. Probabilistic forwarding done

with k = 20 packets.

to decrease monotonically for the range of n shown in the figure. Note the very low values

of the minimum forwarding probability required for a near-broadcast. For example, a

forwarding probability of 0.2 suffices to ensure a near-broadcast when k = 20 message

packets are encoded into n = 30 coded packets. The number of transmissions at this

probability is approximately 4.4 on an average, per node. This is much smaller than the

number of data packets, k = 20, in the network.
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Additionally, suppose that every node in the network possesses all the 30 packets,

and transmits each with probability pk,n,δ = 0.2. Then, on an average, there would be

τk,n,δ = 0.2 × 30 = 6 transmissions per node. Similarly, if every node in the network

(ignore the source and its neighbours) received exactly 20 packets and forwarded each of

them probabilistically, the average transmissions per node would be τk,n,δ = 0.2× 20 = 4.

However, notice that the number of transmissions per node obtained through simulations,

which is 4.4, is in between these two values. This indicates that nodes in the network,

on an average, receive around 22 packets. This is greater than the minimum number of

packets (k = 20) required to recover the ks message packets from the source.

3.4.2 Random regular graphs

In this subsection, we consider a class of random graphs called random regular graphs

(RRGs). Fix a pair of positive integers 1 ≤ d < N such that Nd is even, and let S(N, d)

be the set of all simple1 d-regular graphs on a set of N vertices, VN . The uniform random

d-regular graph GN,d is obtained by sampling with respect to the uniform distribution on

S(N, d). The probability of each simple d-regular graph is given by 1
|S(N,d)| .

One of the popular ways of generating random regular graphs is via the configuration

model, proposed by Bollobás in [74]. Here, we first create a set of points P = {1× [d], 2×

[d], · · · , N × [d]}, where [d] = {1, 2, · · · , d}. This set contains d points corresponding to

each of the N vertices of the graph. Clearly there are Nd points on the whole. Each

element of P represents a half-edge (or a stub) emanating from a vertex. Let M be a

uniformly random perfect matching of the points in P 2. It should be noted that Nd must

be even for a perfect matching to exist. Since P has Nd elements, there are (Nd)!

(Nd/2)! 2Nd/2

perfect matchings on it. We can obtain a (multi)graph, GM(d), if we project P onto VN ,

preserving adjacencies, i.e., for any two vertices i, j ∈ VN , if M contains an edge between

a point in i× [d] and a point in j × [d], then GM(d) contains the edge (i, j). Notice that

1A simple graph has no loops or multiple edges.
2In a perfect matching of a set A with |A| being even, elements of A are divided into pairs such that

every element of A is present in exactly one pair. A uniformly random perfect matching is obtained by
sampling from the set of all perfect matchings, uniformly at random.
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this may not result in a simple graph. However, if we condition on the event that GM(d)

is a simple graph, then it is uniformly distributed over the set of simple d-regular graphs.

This is because any permutation of the d half-edges at every vertex forming the simple

graph, also results in the same graph. In other words, there are (d!)N matchings which

give rise to the same simple graph. Since this is true for every simple graph generated

using the configuration model, we obtain a uniform distribution upon conditioning on the

graph GM(d) being simple. We take this to be the graph GN,d.

The procedure outlined above can be used to generate random graphs with a given

degree sequence d = (d1, d2, · · · , dN), where di is the degree of vertex i. The matching is

then constructed on P = {1× [d1], · · · , N × [dN ]}. We will use this in our analysis of the

probabilistic forwarding mechanism on RRGs.

Since our interest is only in graphs with no loops or multiple edges, we have to generate

these perfect matchings until the time we obtain a simple graph. This procedure is time-

consuming. To overcome this, we follow an adaptive approach proposed in [75] to generate

the graph GN,d which is detailed in Algorithm 1.

In [76], the authors show that the graph generated using the procedure of Algorithm

1 has a uniform distribution asymptotically in N as long as d < N
1
3 . This provides a

fast method to generate asymptotically uniform random regular graphs with degree up to

N
1
3 − ε, for any positive constant ε > 0. We run the probabilistic forwarding algorithm

on this graph GN,d. The source is chosen uniformly at random from the N vertices of the

graph. It is known that the graph GN,d is almost surely connected. In fact, in [77], it is

shown that GN,d almost surely has vertex-connectivity3 d, for d ≥ 3.

Simulations are carried out on two random d-regular graphs for d = 4 and d = 8.

Twenty realizations of each graph are generated and 10 iterations of the probabilistic

forwarding protocol are carried out on each. The results of the simulation are plotted

in Fig. 3.10. The plots show similar trends as those on the hypercube. The minimum

forwarding probability required for a near-broadcast and the expected number of trans-

missions decreases as the number of coded packets is increased. The RRG with degree

3It is the minimum number of vertices whose deletion causes the graph to be disconnected.
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Algorithm 1: Generate random d-regular graph on N vertices

Result: Output a random d-regular graph GN,d

Let VN = {1, 2, · · · , N} and the edge set EN = ∅.

Let U = {1× [d], 2× [d], · · · , N × [d]} denote the set of unpaired points.

Define a pair (i, ai) and (j, aj) in U to be suitable if addition of the edge (i, j) to

EN does not create any loop or a multiple edge.

while Suitable pair can be found do

Choose two random points (i, ai) and (j, aj) in U;

if suitable then

Include the edge (i, j) in EN ;

Delete (i, ai) and (j, aj) from U ;

end

end

if GN,d = (VN , EN) is d-regular then

Output GN,d ;

else

Repeat Algorithm 1 ;

end
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Figure 3.10: Simulations on a random d-regular graph with 1000 nodes. Probabilistic

forwarding done with k = 20 packets.
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d = 8 is better connected, and hence requires fewer nodes to transmit packets to achieve

a near-broadcast, as compared to the RRG with d = 4. This in turn brings down the

value of pk,n,δ required for a near-broadcast. This is seen from the plot as well.

3.5 Takeaways

In this section, we put down some observations that we can make from the simulation

results.

• The minimum forwarding probability decreases with the introduction of additional

coded packets in the network. This is natural to expect since, with extra packets,

one can afford to transmit each packet at a lower probability while still ensuring

that there is a near-broadcast. In fact, in Chapter 4, we will see that pk,n,δ indeed

diminishes to 0 as n→∞, for any underlying network topology.

• On well-connected graphs such as grids, RGGs and lattice structures, the expected

total number of transmissions, τk,n,δ, decreases to a minimum and then gradually

increases. The value of the number of coded packets, n, and the value of the

forwarding probability, pk,n,δ, corresponding to this minimum are optimal in terms

of the energy expenditure for a near-broadcast. More specifically, the network when

operated at these parameters has minimal expected number of transmissions while

ensuring a near-broadcast.

• On trees, the expected total number of transmissions does not decrease with the

addition of coded packets. As a matter of fact, we will show in Chapter 5 that it

actually increases. This implies that introduction of coded packets along with the

probabilistic forwarding protocol degrades the performance, since there are unnec-

essary transmissions of the additional coded packets.

• On hypercubes and random regular graphs, the plot for the expected number of

transmissions gives an impression that it decreases gradually on increasing the num-

ber of coded packets, n. However, note that, since the source always transmits each
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of the n packets, the expected number of transmissions should start to increase after

some (possibly large) n. To illustrate this, in Fig. 4.2, we provide simulations on

the hypercube for a wider range of n. Specifically, we vary n from 200 to 700 in

steps of 50 and plot the corresponding values of pk,n,δ and τk,n,δ.
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Figure 3.11: Simulations on a d-dimensional hypercube. Probabilistic forwarding done

with k = 20 packets.

We will see in Chapter 5 that the primary reason for not observing any benefit (with

respect to the reduction in the overall number of transmissions) on trees is due to the

presence of a unique path from the source to any other node on the tree. On graphs such

as lattices, this phenomenon seems to arise from the availability of “multipath diversity”

in the network, i.e., the existence of multiple paths between the source node and any

(a) 31 × 31 grid (G) (b) Every third row

(G3)

(c) Every fifth row (G5) (d) Boundary and the

center row (G15)

Figure 3.12: Graphs to illustrate the importance of multiple paths.
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Figure 3.13: Comparison of simulations on a grid of side length m = 31 (G), retaining

every third (G3), every fifth (G5) and every fifteenth (G15) row of edges. Probabilistic

forwarding done with k = 20 packets.

other node in the network. Indeed, in a binary tree, there is only one path from the root

to any other node, whereas in a large grid, there is abundant multipath diversity.

To test our multipath diversity hypothesis more systematically, we performed fur-

ther simulations of the probabilistic forwarding protocol on graphs with different levels

of multipath diversity. Starting with the 31 × 31 grid G depicted in Fig. 3.12(a), we

systematically deleted edges to obtain subgraphs G3, G5 and G15 with lower multipath

diversity. Specifically, the graph Gq (for q = 3, 5, 15) was obtained from the grid G as

follows. The nodes of G form a 31× 31 array, whose rows can be indexed by the integers

0, 1, 2, . . . , 30, with 0 denoting the index of the topmost row. Then, Gq is obtained from

G by retaining the horizontal edges connecting adjacent nodes in row j, for every j that is

a multiple of q, and deleting all other horizontal edges — see Figs. 3.12(b)–(d). The mul-

tipath diversity evidently decreases as q increases and the graph obtained, Gq, becomes

more tree-like. The results of our simulations, for k = 20 packets, with the expected

fraction of nodes receiving at least k packets being 1 − δ = 0.9, are shown in Fig. 3.13.

In these simulations, the source node is the node at the centre of the grid, depicted by a

‘×’ in each of the graphs in Fig. 3.12.
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Initial observations

In this chapter, we formalize some notions observed in the simulations. We first begin by

comparing the number of transmissions in our mechanism with those of classic algorithms

like flooding and probabilistic forwarding with no coding. We then proceed to justify some

of the observations that were made in the previous chapter regarding the behaviour of the

minimum forwarding probability, pk,n,δ, and the expected total number of transmissions,

τk,n,δ.

4.1 Comparison of broadcast schemes

Flooding as a broadcast mechanism involves a node forwarding every newly received

packet to all its one-hop neighbours. If there areN nodes in the network and the source has

ks message packets, then the total number of transmissions is ksN . However, a node might

receive the same packet from multiple neighbours resulting in wasteful transmissions.

In probabilistic forwarding, every node in the network forwards a newly received packet

with probability p and does nothing with probability 1 − p. An upper bound on the

expected number of transmissions for this algorithm can be obtained thus. On a network

of N nodes, an average of Np nodes decide to transmit a given source packet, irrespective

of whether they receive it or not. Since there are ks source packets in all, there can be at

most ksNp expected total number of transmissions. Note that p = 1 corresponds to the
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flooding protocol. Thus, with a forwarding probability p < 1, there are gains to be had

over flooding.

20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0
Number of coded packets (n)

15

16

17

18

τ
k,
n,
δ
/m

2

Expected number of transmissions
δ=0.1
δ=0.05

Figure 4.1: Simulations on a 31 × 31 grid. Probabilistic forwarding done with k = 20

packets.

Introduction of coded packets along with probabilistic forwarding brings down the

expected number of transmissions even further on some network topologies like grids,

hypercubes, lattice structures etc. An exploration of this phenomenon via simulations

was presented in Chapter 3. Simulation results in Figs. 3.2, 3.4, 3.9 etc. indicate that the

total number of transmissions further decreases, as compared to probabilistic forwarding

with no coding. Indeed, this is seen on most well-connected graphs for a limited range of

values of the number of coded packets n. For example, consider the simulation plot of the

number of transmissions on a square grid replicated here from the previous chapter in Fig.

4.1. The point n = k = 20 corresponds to probabilistic forwarding with no coding. Notice

the decrease in the number of transmissions when n is increased from 20 to 25. While

the exact decrease is hard to quantify, on random geometric graphs (Chapter 7) and grids

(Chapter 6), we use ergodic theorems to obtain estimates and thus justify the benefit

obtained with the introduction of coded packets along with probabilistic forwarding.

4.2 Running time

The proposed probabilistic forwarding mechanism with coded packets runs in finite time

on a given network. This is easily seen since the decision to either transmit a particular

packet or not is made only once. Subsequent receptions of the same packet are neglected.
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Assuming packets are transmitted sequentially with only a single network node transmit-

ting at any point of time, a naive bound on the mean running time of the algorithm is

the expected total number of transmissions for n packets which is easily upper bounded

by nNp.

4.3 Behaviour of pk,n,δ

Recall the definition of the minimum forwarding probability:

pk,n,δ := inf

{
p

∣∣∣∣ E [Rk,n

N

]
≥ 1− δ

}
,

where Rk,n is the number of nodes which receive at least k out of n packets (successful

receivers). For a deterministic graph, the expectation is over the probabilistic forwarding

algorithm, whereas, for a random graph, it is additionally over all the realizations of the

graph. Additionally, recall that for RGGs and RRGs, the total number of nodes, N , is

the number of nodes in the component containing the source, which is also a random

quantity.

If a successful receiver must receive k out of n′ coded packets, instead of k out of n,

where n′ > n, each packet can be transmitted at a lower probability while still ensuring a

near-broadcast. In fact, the minimum forwarding probability tends to 0 as n is increased.

This is formalized in the following lemma.

Lemma 4.3.1. Consider probabilistic forwarding of n coded packets on a fixed underlying

connected graph. For fixed values of k and δ,

(a) pk,n,δ is a non-increasing function of n.

(b) pk,n,δ → 0 as n→∞.

Proof. (a) For any n > 0, the random variables Rk,n and Rk,n−1 can be coupled as follows:

If there are a total of n coded packets, then Rk,n−1 (resp. Rk,n) is realized as the number

of nodes, including the source node, that receive at least k of the first n−1 (resp. at least
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k of the n) coded packets. It is then clear that E[ 1
N
Rk,n] ≥ E[ 1

N
Rk,n−1], and hence, by

(2.1), we have pk,n,δ ≤ pk,n−1,δ.

(b) From the n coded packets, create bn
k
c non-overlapping (i.e., disjoint) groups of k

packets each. For i = 1, 2, · · · , bn
k
c, let Ai be the event that the ith group of k coded

packets is received by at least (1− δ/2)N nodes. The events Ai are mutually independent

and have the same probability of occurrence. For any p > 0, we have P(Ai) being strictly

positive (but perhaps small). Hence,

P(at least one Ai occurs) = 1−
(
1− P(A1)

)bn
k
c ≥ 1− δ

2

for all sufficiently large n, so that P
(
Rk,n
N
≥ 1− δ/2

)
≥ 1− δ/2. This further implies that

E[Rk,n]
N

≥ (1 − δ/2)(1 − δ/2) ≥ 1 − δ. Thus, for any p > 0, we have pk,n,δ ≤ p for all

sufficiently large n.

For the case of RGGs, Lemma 4.3.1 holds for every realization of the random graph.

To make a formal statement, let us denote the RGG by G, and a realization of it by g.

Since N is the number of nodes in the component of the source, it is a random quantity.

The successful receivers are a subset of the nodes in the component of the origin. Let

us define Eg to be the expectation over the probabilistic forwarding protocol when the

underlying graph is g. Using the tower property of expectation, we obtain

E
[
Rk,n

N

]
= E

[
E
[
Rk,n

N

∣∣∣ G]] .
Conditioned on a realization g of G, N is fixed and it is true that Eg

[
Rk,n
N

]
≥ Eg

[
Rk,n−1

N

]
due to similar arguments as in Lemma 4.3.1(a). Therefore, we have that pk,n,δ is a non-

increasing function of n even when the underlying graph is random.

In a similar way, due to Lemma 4.3.1(b), for all sufficiently large n, we have that

Eg
[
Rk,n
N

]
≥ 1− δ for any realization g of G. This holds true since the events Ai defined in

the proof of Lemma 4.3.1(b) are independent and identically distributed (iid) conditional

on G = g. Therefore E
[
Rk,n
N

]
can be made arbitrarily close to 1 for sufficiently large n.
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This in turn means that pk,n,δ → 0 as n→∞.

These arguments can be extended to the case of an RRG as well by conditioning both

on the realization of the graph and the choice of the source vertex.

4.4 Behaviour of τk,n,δ

A much more interesting trend is that of the expected total number of transmissions τk,n,δ,

which initially decreases and then grows gradually as the number of coded packets n is

increased. There is thus an optimal value of n that minimizes τk,n,δ. This happens due to

an interplay between two opposing factors: an increase in n leads to a decrease in pk,n,δ,

which contributes towards a decrease in τk,n,δ. But this is opposed by the fact that a

higher redundancy tends to increase the number of transmissions, since there are a larger

number of packets to be transmitted in the network. More formally, the expected total

number of transmissions can be expressed as

τk,n,δ =
n∑
i=0

E [Ti] ,

where Ti is the number of transmissions of packet i. Note that with the addition of coded

packets in the network, the number of terms of this summation increases. However,

from Lemma 4.3.1, the probability with which each packet is forwarded decreases with

the addition of excess coded packets. This in turn reduces the individual terms of the

summation which is the number of transmissions of each packet, Ti.

On well-connected graphs such as the lattice structures, the initial decrease in τk,n,δ

can be attributed to the dominant effect of the initial steep decrease in pk,n,δ. However, as

the redundancy is further increased, the decrease in pk,n,δ becomes more gradual. In this

regime, as the number of coded packets n increases, the gain obtained via the slight de-

crease in pk,n,δ is more than offset by the fact that there are more packets to be transmitted

in the network.

On a tree, however, the decrease in the forwarding probability pk,n,δ is not substantial.

It can be observed from Fig. 3.8(a) that the minimum forwarding probability necessary
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for a near-broadcast remains very close to 1, even with the introduction of additional

coded packets. This means that even though there are additional packets in the system,

each of them is being transmitted with probability ≈ 1. This only contributes to an

increase in the number of transmissions in the network which is what is observed on trees

in Fig. 3.8(b).

Additionally, note that a very naive bound for the expected total number of trans-

missions is τk,n,δ > n. This is because the source always transmits each of the n packets.

This means that, after a certain n, the curve for τk,n,δ must eventually stop decreasing in

n. Simulations on the hypercubes and RRGs in Figs. 3.9 and 3.10 showed a monotonic

decrease in τk,n,δ for n ranging from 20 to 40. However, for higher values of n, this can

indeed be seen to increase with n as shown in Fig. 4.2 for the hypercube. At these

ranges of n, the minuscule decrease in pk,n,δ is unable to compensate for the increase in

the number of transmissions of each packet.
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Figure 4.2: Simulations on a hypercube with 2d nodes. Probabilistic forwarding done

with k = 20 packets.
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Chapter 5

Trees

In this chapter, we analyze the probabilistic forwarding mechanism on trees. We consider

rooted trees in which the root is designated as the source. We first analyze the mechanism

on rooted binary trees and then generalize it to d-ary trees, spherically symmetric trees

and some other general tree configurations.

5.1 Binary tree

Figure 5.1: A rooted binary tree of height H.

Recall the rooted binary tree of height H defined in Section 3 and depicted here in

Fig. 5.1. There are totally N =
∑H

l=0 2l = 2H+1−1 nodes and the root node is taken to be

the source. The root node encodes the k data packets into n coded packets and transmits

them to its children. Every other node on the tree follows the probabilistic forwarding

strategy with some fixed forwarding probability p > 0.
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Simulation results of the probabilistic forwarding mechanism on a binary tree of height

H = 10 with k = 100 packets are shown in Fig. 5.2. Our goal is to explain these results

which reflect the behaviour of the probabilistic forwarding protocol on trees. We first

begin by giving an intuitive explanation for this behaviour.
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(a) Minimum retransmission probability
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(b) Expected total number of transmissions

Figure 5.2: Simulations on a binary tree of height H = 10. Probabilistic forwarding done

with k = 100 packets.

On the binary tree, almost half the number of nodes are present on the leaves of the

tree. Since we are interested in a broadcast mechanism where the fraction of successful

receivers is at least 1 − δ for δ = 0.1(say), we would want a large fraction (0.8 to be

precise) of the leaves to receive at least k out of the n packets. The probability that a leaf

node receives a packet is pH−1 since, every node on the unique path connecting the leaf

node to the source needs to transmit the packet. If n packets are transmitted, a leaf node

receives npH−1 packets on average. Since the leaf node needs to receive at least k packets

for it to be successful, we must have npH−1
k,n,δ ≥ k. Notice that since k

n
≥ 1

2
, for large H, the

minimum forwarding probability for a near-broadcast must be close to 1. This offsets the

advantage seen due to the decrease in the forwarding probability and hence the number

of transmissions increases with n. We formalize this intuition in the next section.
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5.2 Main results

To get a handle on the minimum retransmission probability pk,n,δ for a near-broadcast,

we first look at the number of successful receivers, Rk,n. We can write Rk,n =
∑H

`=0 R`,

where R` is the number of nodes at level ` that hold at least k of the n packets. Similarly,

define Tk,n =
∑H

`=0 T`, where T` is the number of transmissions by nodes at level `. Note

that T0 = n and R0 = 1 since the source transmits all the n packets.

In a tree, there is only a single path from the root to any node in the tree. Thus, for

a node v at level ` to receive a packet from the root, all the intermediate nodes on the

unique path from the root to v need to transmit the packet. Hence, for ` ≥ 1,

P(node v at level ` receives the jth packet) = p`−1.

Since individual packets are transmitted independently of each other, we have

P(node v at level ` receives at least k out of n packets) =
n∑
r=k

(
n

r

)
p(`−1)r(1− p`−1)n−r

= P(Z`−1 ≥ k),

where Z`−1 ∼ Bin(n, p`−1) is a binomial random variable with parameters n and p`−1.

Nodes that share a common parent receive the same packets and hence will possess the

same number of packets at the end of the probabilistic forwarding mechanism. Summing

the above over all nodes v at level `, we obtain E[R`] = 2` P(Z`−1 ≥ k), and hence,

E[Rk,n] = 1 + E

[
H∑
`=1

R`

]
= 1 +

H∑
`=1

2` P(Z`−1 ≥ k). (5.1)

Similarly, a node v at level ` ∈ {0, 1, · · · , H} receives a packet from the source and

transmits it with probability p`. This gives the total expected number of transmissions
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for a transmission probability p to be

E[Tk,n] =
H∑
`=0

E[T`] = n
(2p)H+1 − 1

2p− 1
.

Thus, E[Tk,n] is a monotonically increasing function of p, from which it can be inferred

that

τk,n,δ = n
(2pk,n,δ)

H+1 − 1

2pk,n,δ − 1
. (5.2)

Moreover, from (5.1) and the fact that N = 2H+1 − 1, we have

pk,n,δ = inf

{
p

∣∣∣∣ 1 +
∑H

`=1 2` P(Z`−1 ≥ k)

2H+1 − 1
≥ 1− δ

}
,

where Z` ∼ Bin(n, p`) for ` = 0, 1, . . . , H − 1. The inequality within the expression for

pk,n,δ above can be rewritten as

∑H−1
`=0 2`+1P(Z` ≤ k − 1)

2H+1 − 1
≤ δ. (5.3)

An analysis starting from (5.3) yields the two propositions below, which provide good

lower and upper bounds on pk,n,δ. These bounds are plotted, for k = 100, δ = 0.1 and

H = 50, in Fig. 5.3(a) along with the exact values of pk,n,δ obtained numerically from

(5.3). The corresponding plots for τk,n,δ, obtained via (5.2), are shown in Fig. 5.3(b).

Proposition 5.2.1. Let k ≥ 2, H ≥ 2, and 0 ≤ δ < 1
8

be fixed. For all n ≥ k, we have

pk,n,δ >
(
k−1
n

) 1
H−1 .

In the case of k = 1 and n > 1, the lower bound can be improved to pk,n,δ >
(

1
n

) 1
H−1 .

Proposition 5.2.2. Let k ≥ 2, H ≥ 2, and 0 < δ ≤ 1 be fixed, and let

δ′ := min
{
δ
(

2H+1−1
2H+1−2

)
, 1
}

. Then, for all n ≥ 1, we have

pk,n,δ ≤ min

{(
k − 1 + t

n

) 1
H−1

, 1

}
,
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where t =
√

2(k − 1)(− ln δ′) + (ln δ′)2 − ln δ′. In the case of k = 1, the bound

pk,n,δ ≤ min

{(
− ln δ′

n

) 1
H−1

, 1

}

holds for all n ≥ 1.

The following theorem, which summarizes the behaviour of pk,n,δ on binary trees, is a

direct consequence of Propositions 5.2.1 and 5.2.2.

Theorem 5.2.3. Let k ≥ 2, H ≥ 2 and 0 < δ < 1
8

be fixed. We then have pk,n,δ =

Θ
((

k
n

) 1
H−1

)
, where the constants implicit in the Θ-notation1 may be chosen to depend

only on H and δ.
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(a) Minimum retransmission probability
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Figure 5.3: The middle curves are plots of the true values of pk,n,δ and τk,n,δ obtained from

(5.3) and (5.2), for k = 100, δ = 0.1 and H = 50. The other curves are bounds obtained

via Propositions 5.2.1 and 5.2.2, (5.5), (5.4) and (5.2).

Tighter bounds for pk,n,δ can be obtained by bounding the binomial cumulative dis-

tributive function (CDF) in (5.3) using Theorem A.2.1. This gives,

pk,n,δ ≤ inf

{
p

∣∣∣∣∣
∑H−1

`=0 2`+1Cn,p`(k)

2H+1 − 1
≤ δ

}
(5.4)

1The notation a(n) = Θ(b(n)) means that there are positive constants c1 and c2 such that c1b(n) ≤
a(n) ≤ c2b(n) for all sufficiently large n.
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and

pk,n,δ ≥ inf

{
p

∣∣∣∣∣
∑H−1

`=0 2`+1Cn,p`(k − 1)

2H+1 − 1
≤ δ

}
, (5.5)

where Cn,q(k) = Φ
(

sgn
(
k
n
− q
)√

2nD( k
n
|| q)
)

. The plots in Fig. 5.3 provide a theoretical

explanation for why τk,n,δ increases with n.

5.3 Proofs

In this section, we collect the proofs of Proposistions 5.2.1 and 5.2.2.

Proposition 5.2.1. Let k ≥ 2, H ≥ 2, and 0 ≤ δ < 1
8

be fixed. For all n ≥ k, we have

pk,n,δ >
(
k−1
n

) 1
H−1 .

In the case of k = 1 and n > 1, the lower bound can be improved to pk,n,δ >
(

1
n

) 1
H−1 .

Proof of Prop. 5.2.1

Suppose that p is such that npH−1 ≤ k − 1. Then, ZH−1 has mean at most k − 1. As

a result, the median of ZH−1 is also at most k − 1 [78, Corollary 3.1]. In other words,

P(ZH−1 ≤ k − 1) ≥ 1
2
. Consequently,

H−1∑
`=0

2`+1 P(Z` ≤ k − 1) ≥ 2H P(ZH−1 ≤ k − 1)

≥ 2H−1,

so that the left-hand side (LHS) of (5.3) is at least 2H−1

2H+1−1
≥ 2H−1

2H+1 = 0.25 > δ. Hence, for

(5.3) to hold, we must have npH−1 > k− 1, from which the lower bound on pk,n,δ follows.



Chapter 5. Trees 52

In the case of k = 1, suppose that p ≤
(

1
n

)H−1
. Then,

P(ZH−1 = 0) =
(
1− pH−1

)n
≥
(

1− 1

n

)n
≥
(

1− 1

2

)2

= 0.25,

for all n ≥ 2. Hence,

H−1∑
`=0

2`+1P(Z` ≤ k − 1) ≥ 2HP(ZH−1 = 0) ≥ 2H−2.

As a result, the LHS of (5.3) is at least 2H−2

2H+1 = 0.125 > δ. Thus, again, for (5.3) to hold,

we need p >
(

1
n

)H−1
.

Proposition 5.2.2. Let k ≥ 2, H ≥ 2, and 0 < δ ≤ 1 be fixed, and let

δ′ := min
{
δ
(

2H+1−1
2H+1−2

)
, 1
}

. Then, for all n ≥ 1, we have

pk,n,δ ≤ min

{(
k − 1 + t

n

) 1
H−1

, 1

}
,

where t =
√

2(k − 1)(− ln δ′) + (ln δ′)2 − ln δ′. In the case of k = 1, the bound

pk,n,δ ≤ min

{(
− ln δ′

n

) 1
H−1

, 1

}

holds for all n ≥ 1.
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Proof of Prop. 5.2.2

Note first that for all ` ≤ H − 1, we have2 P(Z` ≤ k − 1) ≤ P(ZH−1 ≤ k − 1). Hence,

H−1∑
`=0

2`+1P(Z` ≤ k − 1) ≤

(
H−1∑
`=0

2`+1

)
P(ZH−1 ≤ k − 1)

= (2H+1 − 2)P(ZH−1 ≤ k − 1).

Thus, to show that (5.3) holds, it suffices to prove that P(ZH−1 ≤ k − 1) ≤ δ
(

2H+1−1
2H+1−2

)
.

It is, therefore, enough to show that P(ZH−1 ≤ k − 1) ≤ δ′.

Consider k = 1 first. Take p = min
{

1,
(
C′

n

) 1
H−1

}
, where C ′ = − ln δ′. Then,

P(ZH−1 ≤ k − 1) = P(ZH−1 = 0) =
(
1− pH−1

)n
,

which, by choice of p, is either equal to 0 (if C ′ ≥ n) or (1−C ′/n)n (if C ′ < n). In either

case, P(ZH−1 = 0) is less than e−C
′
= δ′, as needed.

Consider k ≥ 2 now. Take p = min
{

1,
(
k−1+t
n

) 1
H−1

}
, where t is as in the statement of

the proposition. For n ≥ k − 1 + t, we have ZH−1 ∼ Bin(n, k−1+t
n

), so that

P(ZH−1 ≤ k − 1) = P
(
ZH−1 ≤ n(k−1+t

n
− t

n
)
)

≤ e−nD( k−1
n
‖ k−1+t

n
)

via the Chernoff bound. Here, D(· ‖ ·) denotes the Kullback-Leibler divergence, defined

as D(x ‖ y) = x ln x
y

+ (1− x) ln 1−x
1−y . Using the bound D(x ‖ y) ≥ (x−y)2

2y
, valid for x ≤ y

[79], we further have

P(ZH−1 ≤ k − 1) ≤ e
−n
[

(t/n)2

2(k−1+t)/n

]
= e−

t2

2(k−1+t) .

Thus, to conclude that P(ZH−1 ≤ k − 1) ≤ δ′, as required, it suffices to show that

t2

2(k−1+t)
≥ − ln δ′. This can be re-written as t2 +2t ln δ′+2(k−1) ln δ′ ≥ 0, or equivalently,

2This is easily shown by a standard coupling argument — see Lemma A.1.1 of Appendix A
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(t+ ln δ′)2 + 2(k − 1) ln δ′ − (ln δ′)2 ≥ 0, which is evidently satisfied by our choice of t.

5.4 Conclusion

Our analysis extends easily to d-ary trees as well. Spherically symmetric trees in which

every node at a particular level has the same number of children can also be handled with

a similar analysis.

More generally, for any rooted tree, the condition for a near-broadcast equivalent to

(5.3) is
H−1∑
`=0

f`+1 P(Z` ≤ k − 1) ≤ δ,

where f` is the fraction of nodes of the tree at level `. Notice that in the proofs of

Proposition 5.2.1 and Proposition 5.2.2, we bound the required probabilities P(Z` ≤ k−1)

with the probabilities P(ZH−1 ≤ k − 1). In particular, in the proof of Proposition 5.2.1,

we replace the summation above with the term corresponding to H−1. Bounds obtained

using this substitution are useful when the fraction of nodes at level H is the largest.

In other words, the analysis given here carries over to trees in which the leaf nodes are

present only at level H.

Nevertheless, our results indicate that introducing redundancy in the form of coding

into the probabilistic retransmission protocol on tree-like structures is not beneficial in

terms of the overall energy expenditure in the network. From our analysis, it is evident

that the primary reason for this behaviour is the presence of a unique path from the root

to any node on the tree. Introduction of additional coded packets is rendered useless

due to the lack of multiple paths as in a grid. However, our treatment of the problem

gives us an insight into the possible reason behind the difference in performance on trees

and other well-connected graphs. This is the multipath diversity phenomenon described

in Section 3.5. Characterizing it on different network topologies is not straightforward

(see Section 9.1.2). Owing to this, in the following chapter, we investigate an alternate

approach, using percolation theory, on well-connected graphs such as lattices and grids.



Chapter 6

Grids

In this chapter, we analyze the probabilistic forwarding mechanism with coded packets on

grids. The main analytical tool used is the site percolation process. While we concentrate

only on the square grid, we will see that the analysis carries over to more general lattice

structures as well.

6.1 Square grid

Figure 6.1: The source node (×) is

at the centre of the 31× 31 grid.

Consider, for an odd integer m > 1, the discrete

m × m grid Λm :=
[
−m−1

2
, m−1

2

]2 ∩ Z2 centred at

the origin. The source node is assumed to be at the

centre of the grid. Simulation results for the prob-

abilistic forwarding algorithm with k = 100 packets

on the 31 × 31 grid (depicted in Fig. 6.1) are plot-

ted in Fig. 6.2. In this section, we try to explain

these observations by developing an analysis that is

at least valid for large m. Specifically, we turn to

the theory of site percolation on the integer lattice

Z2 to explain the pk,n,δ and τk,n,δ curves obtained via simulations on large grids Λm.

55
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Figure 6.2: Simulations on a 31 × 31 grid. Probabilistic forwarding done with k = 100

packets.

6.2 Preliminaries

6.2.1 Site percolation on Z2

We start with a brief description of the site percolation process (see e.g. [80]) on Z2.

Associate each vertex u of Z2 with a Bernoulli random variable, Xu, having parameter p.

Then, site percolation is an i.i.d. process (Xu)u∈Z2 , with Xu ∼ Ber(p) for each u ∈ Z2,

where the probability p ∈ [0, 1] is a parameter of the process. A node or site u ∈ Z2 is

open if Xu = 1, and is closed otherwise. An illustration is provided in Fig. 6.3(a). The

product measure ⊗uνu, with νu ∼ Ber(p) ∀u ∈ Z2 is the push-forward measure of the

(Xu)u∈Z2 process on {0, 1}Z2
. We denote this by P1.

For u = (ux, uy) ∈ Z2, define |u| := |ux| + |uy|. Two sites u and v are joined by an

edge, denoted by u—v, iff |u− v| = 1. The next few definitions are made with respect to

a given realization of the process (Xu)u∈Z2 . Two sites u and v are connected by an open

path, denoted by u ←→ v, if there is a sequence of sites u0 = u, u1, u2, . . . , un = v such

that uk is open for all k ∈ {0, 1, . . . , n} and uk−1—uk for all k ∈ [n] (see Fig. 6.3(b)).

The open cluster, Cu, containing the site u is defined as Cu = {v ∈ Z2|u←→ v}. Thus,

Cu consists of all sites connected to u by open paths, as shown in Fig 6.3(c). In particular,

Cu = ∅ if u is itself closed. The boundary, ∂Cu, of a non-empty open cluster Cu is the set of

all closed sites v ∈ Z2 such that v—w for some w ∈ Cu. The set Cext
u := Cu∪∂Cu is called
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(a) - open, - closed (b) u←→ v

(c) Encircled nodes form Cu (d) Encircled nodes with nodes form Cext
u

Figure 6.3: Site percolation on Z2.

an extended cluster (see Fig 6.3(d)). The cluster Cu (resp. Cext
u ) is termed an infinite open

cluster (IOC) (resp. infinite extended cluster (IEC)) if it has infinite cardinality. Note

that Cext
u is infinite iff Cu is infinite.

It is well-known that there exists a critical probability pc ∈ (0, 1) such that for all

p < pc, there is almost surely (with respect to P1) no IOC, while for all p > pc, there

is almost surely a unique IOC. We do not know what happens at p = pc, as the exact
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value of pc is itself not known (for site percolation on Z2). It is believed that pc ≈ 0.59

[80, Chapter 1]. Another quantity of interest, which will play a crucial role in our analysis,

is the percolation probability θ(p), defined to be the probability that the origin 0 is in an

IOC. In our analysis, we also consider the probability, θext(p), of the origin 0 being in an

IEC. Clearly, from our definition of the IEC, for p < pc, we have θext(p) = θ(p) = 0; for

p > pc, it is not difficult to see that θext(p) ≥ θ(p) > 0. It is known that θ(p) is non-

decreasing and infinitely differentiable in the region p > pc [81], but there is no analytical

expression known for it. The following lemma, outlined in [60], expresses θext(p) in terms

of θ(p).

Lemma 6.2.1. For any p > pc, we have θext(p) =
θ(p)

p
.

Proof. Let C and Cext be the (unique) IOC and IEC, respectively. We then have

θ(p) = P1(0 ∈ C) = P1(0 ∈ Cext and 0 is open). (6.1)

Now, observe that the event {0 ∈ Cext} is determined purely by the states of the nodes

other than the origin. If at least one neighbour of the origin is present in C, then 0 ∈ Cext.

Hence, this event is independent of the event that 0 is open. Thus, the RHS of (7.27)

equals θext(p) · p, which proves the lemma.

Note that, since the origin can be part of the IOC only if it is open, we have that

θ(p) ≤ p which ensures that θext(p) ≤ 1. Fig. 6.4 plots θ(p) and θext(p) as functions of p,

the former being obtained via simulations based on Theorem 6.2.3.

6.2.2 Ergodic theorems

Let A be a finite alphabet, and ν a probability measure on it. Consider the probability

space (Ω,F ,P), where Ω = AZ2
, F is the σ-algebra of cylinder sets, and P is the product

measure ⊗uνu with νu = ν for all u ∈ Z2. For z ∈ Z2, define the shift operator Tz : Ω→ Ω

that maps ω = (ωu)u∈Z2 to Tzω such that (Tzω)u = ωu−z for all u ∈ Z2. Correspondingly,

for a random variable X defined on this probability space, set TzX := X ◦ T−z, i.e.,

(TzX)(ω) = X(T−zω) for all ω ∈ Ω.
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Figure 6.4: θ(p) and θext(p) vs. p

The following theorem is a special case of Tempelman’s pointwise ergodic theorem (see

e.g., [82, Chapter 6]). For A = {0, 1}, this was stated as Proposition 8 in [83].

Theorem 6.2.2. For any random variable X on (Ω,F ,P) with finite mean, we have

lim
m→∞

1

m2

∑
z∈Λm

TzX = E[X] P-a.s.,

where Λm := [−m−1
2
, m−1

2
]2 ∩ Z2 is the m×m grid (m odd).

In a broad sense, ergodic theorems relate a quantity averaged over space (LHS) to the

time-average (expectation on the RHS). The expectations are often easy to compute and

thus, these theorems can be used to obtain approximations for spatial averages in the

limit of large m.

Site percolation

The theorem applies to the case of site percolation, in which ν above is the Bernoulli(p)

measure on A = {0, 1}. Applying the theorem with X = 1{0∈C}, the indicator function

of 0 being in the (unique when p > pc) IOC C, and again with X = 1{0∈Cext}, we obtain

the following theorem.

Theorem 6.2.3. Let p > pc, and let C and Cext, respectively, be the (almost surely)

unique IOC and IEC of a site percolation process on Z2 with parameter p. Then, almost
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surely, we have

lim
m→∞

1

m2
|C ∩ Λm| = θ(p) and lim

m→∞

1

m2
|Cext ∩ Λm| = θext(p).

Using the dominated convergence theorem (DCT), we also have

lim
m→∞

E
[

1

m2
|C ∩ Λm|

]
= θ(p) and lim

m→∞
E
[

1

m2
|Cext ∩ Λm|

]
= θext(p).

Based on the first equation above, to obtain an estimate of θ(p), the site percolation

process with parameter p was simulated on a 1001×1001 grid and the average fraction of

nodes (averaged over 100 realizations of the process) in the largest open cluster was taken

to be the value of θ(p). These are the values of θ(p) plotted in Fig. 6.4. We would like to

emphasize that the plots in the figure should only be trusted for p > pc, as Theorem 6.2.3

is only valid in that range. However, as the exact value of pc is unknown, simulation

results are reported for the range of p values shown in the plot. We will use values from

this plot in our numerical results.

Multiple site percolations on Z2

Now, consider n independent site percolation processes on Z2, with parameter p > pc.

Let O denote the event that the origin is open in all n percolations. We will use Po and

Eo, respectively, to denote the probability measure and expectation operator conditioned

on the event O, and P and E for the unconditional versions of these. Since p > pc, each

percolation has a unique IOC and IEC, almost surely with respect to P (P-a.s.). Next,

with A = {0, 1}n and ν the product of n independent Bernoulli(p) measures, we are in the

setting of n independent site percolations on Z2. Let Cext
k,n be the set of sites that belong

to the IEC in at least k out of the n percolations. In this case, taking E to be the event

that the 0 is in the IEC in at least k of the n independent percolations and X = 1E, and

applying Theorem 6.2.2, we obtain

lim
m→∞

1

m2
|Cext

k,n ∩ Λm| = P(E) P-a.s.
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Using the fact that the origin is in the IEC with probability θext(p), and since all the n

percolations are independent, the probability of the event E on the RHS in the above

equation is the tail probability of a Bin(n, θext(p)) distributed random variable. More

precisely

P(E) =
n∑
j=k

(
n

j

)
(θext(p))j(1− θext(p))n−j.

In the following, we will denote this by θext
k,n(p). Thus, we have

Theorem 6.2.4. For p > pc,

lim
m→∞

1

m2
|Cext

k,n ∩ Λm| = θextk,n(p) P-a.s.

6.3 Analysis and main results

Having developed the required background, in this section, we now map the probabilistic

forwarding mechanism on the finite grid to the probabilistic forwarding mechanism on the

infinite Z2 lattice. We then obtain estimates for the minimum forwarding probability and

the expected total number of transmissions by relating it to the site percolation process.

6.3.1 Relating site percolation to probabilistic forwarding

Site percolation on Z2 is a faithful model for probabilistic forwarding of a single packet

on the infinite lattice Z2. The origin 0 is the source of the packet. The open cluster, C0,

containing the origin 0 corresponds to the set of nodes that transmit (forward) the packet,

and the extended cluster Cext
0 corresponds to the set of nodes that receive the packet. The

only caveat is that, since the source is assumed to always transmit the packet, we must

consider only those realizations of the site percolation process in which the origin 0 is

open. In other words, we must consider the site percolation process, conditioned on the

event that the origin is open. By extension, the probabilistic forwarding of n coded packets
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corresponds to n independent site percolation processes on Z2, conditioned on the event

that the origin is open in all n percolations.

Let O denote the event that the origin is open in all n percolations. In our analysis,

we will use Po and Eo, respectively, to denote the probability measure and expectation

operator conditioned on the event O, and P and E for the unconditional versions of these.

6.3.2 Analysis of probabilistic forwarding on a large (finite) grid

In this section, we analyze the probabilistic forwarding mechanism on the finite grid Λm

using the following approach. We map the probabilistic forwarding mechanism on Λm onto

the probabilistic forwarding mechanism on the infinite Z2 lattice. From the discussion

in the previous subsection, this is nothing but n independent site percolations on Z2

conditioned on the event O. Using ergodic theorems for the site percolation process, we

get a handle on the expected number of nodes that receive at least k out of the n packets

from the origin on Z2. This, in turn, is used to obtain estimates of pk,n,δ and τk,n,δ. In

our upcoming analysis, we make the following assumption.

Assumption 1. We operate in the super-critical region for site percolation on Z2, i.e.

p > pc.

We provide a justification for this assumption in Section 6.6.1.

Minimum forwarding probability

Denote by Rk,n(Λm), the number of successful receivers in Λm, i.e., the number of nodes

that receive at least k out of n packets during the probabilistic forwarding mechanism on

Λm. The following theorem is our main result for grids. Its proof is quite technical, and

is presented in the next section.

Theorem 6.3.1. For p > pc, we have

lim
m→∞

E
[
Rk,n(Λm)

m2

]
=

n∑
t=k

t∑
j=k

(
n

t

)(
t

j

)
(θext(p))t+j(1− θext(p))n−j.
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Figure 6.5: Comparison of the minimum forwarding probability obtained via simulations

on a 31× 31 grid and a 501× 501 grid, with the results obtained numerically from (6.3),

for k = 100 data packets and δ = 0.1.

Equivalently,

lim
m→∞

E
[
Rk,n(Λm)

m2

]
= P(Y ≥ k), (6.2)

where Y ∼ Bin(n, (θext(p))2).

Thus, for k, n, δ fixed, we have for all sufficiently large grids Λm,

pk,n,δ(Λm) ≈ inf{p | Pr(Y ≥ k) ≥ 1− δ}, (6.3)

where Y ∼ Bin(n, (θext(p))2). This can be evaluated numerically using the values of θext(p)

plotted in Fig. 6.4. For large k and n, the probability P(Y ≥ k) can be approximated

well using the bounds given in Theorem A.2.1 in the appendix. A sample of results thus

obtained are shown in Fig. 6.5. It is clear that these results match very well with those

obtained from simulations on a 501× 501 grid.

Total number of transmissions

We next look into estimating the expected total number of transmissions at a given

forwarding probability p. Consider the transmission of a single packet on the finite grid

Λm. Let T (Λm) be the number of transmissions of the packet on the finite grid Λm and

let T (Z2) ∩ Λm be the set of nodes in Λm which receive the packet from the origin and



Chapter 6. Grids 64

100 120 140 160 180 200
Number of coded packe s (n)

65

70

75

80

85

τ
k,
n,
δ
/m

2

Simula ions on Γ31
Simula ions on Γ501
from expression in (6.4)

Figure 6.6: Comparison of the expected total number of transmissions, normalized by the

grid size m2, obtained via simulations on Γ31 and Γ501, with the expression from (6.4), for

k = 100 data packets and δ = 0.1.

transmit it on the infinite Z2 lattice. It can be shown1 that

lim
m→∞

E[T (Λm)]

m2
= lim

m→∞

E [|T (Z2) ∩ Λm|]
m2

.

Now, T (Z2) is simply the open cluster C0 in the percolation framework. Thus, when

normalized by the grid size m2, the expected number of transmissions, E[T (Λm)], for

probabilistic forwarding on a large (but finite) grid Λm is well-approximated by E
[
|C0 ∩

Λm|
∣∣ 0 is open

]
. The following lemma gives an expression for this quantity in the limit

as the grid size goes to infinity.

Lemma 6.3.2. For site percolation with p > pc, we have

lim
m→∞

1

m2
E
[
|C0 ∩ Λm|

∣∣ 0 is open
]

=
θ(p)2

p
.

Proof. We use P0 and E0, respectively, to denote the probability measure and expectation

operator conditioned on the event that the origin 0 is open. Let C be the (unique) IOC,

1This is shown using arguments entirely analogous to those used to show (6.6) in Section 6.4. We
omit the details.



Chapter 6. Grids 65

and A the event {0 ∈ C}. Then,

lim
m→∞

E0

[
1

m2
|C0 ∩ Λm|

]
= lim

m→∞
E
[

1

m2
|C0 ∩ Λm|

∣∣ A]P0(A)

+ lim
m→∞

E0

[
1

m2
|C0 ∩ Λm|

∣∣ Ac]P0(Ac)

Now, given Ac (i.e., 0 /∈ C), C0 is P0-a.s. finite, and so by the DCT,

lim
m→∞

E0

[
1

m2
|C0 ∩ Λm|

∣∣ Ac] = 0.

On the other hand, given A, we have C0 = C. From Theorem 6.2.3, we know that

lim
m→∞

1
m2 |C∩Λm| = θ(p) P1-a.s.. Moreover, this statement holds even when the probability

measure P1 is conditioned on A, since P1(A) = θ(p) > 0 for p > pc. So, again by the

DCT, lim
m→∞

E[ 1
m2 |C ∩ Λm| | A] = θ(p). We have thus shown that

lim
m→∞

E0

[
1

m2
|C0 ∩ Λm|

]
= θ(p)P0(A).

The proof is completed by observing that P0(A) = P1(A)
P1(0 is open)

= θ(p)
p

.

Thus, in probabilistic forwarding of a single packet on a large grid Λm, the expected

number of transmissions, normalized by the grid size m2, is approximately θ(p)2

p
. Hence,

when we have n coded packets, by linearity of expectation, the expected total number of

transmissions, again normalized by the grid sizem2, is approximately n θ(p)2

p
. In particular,

setting p = pk,n,δ, we obtain

1

m2
τk,n,δ(Λm) ≈ n

θ(pk,n,δ)
2

pk,n,δ
, (6.4)

provided that pk,n,δ > pc.

Fig. 6.6 compares, for k = 100 data packets and δ = 0.1, the values of 1
m2 τk,n,δ obtained

using (6.4), (6.3) and the θ(p) values from Fig. 6.4, with those obtained via simulations

on the Γ31 and Γ501 grids. The curve based on (6.4), (6.3) and θ(p) initially tracks the
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Γ501 curve well, but trails off after n = 130. This is because the former curve uses the

approximation for pk,n,δ in (6.3), which, for any given n, is valid only for sufficiently large

m. For values of n larger than 130, m = 501 may not fall in the “sufficiently large” range.

This is discussed in more detail in Section 6.6.2.

Moreover, it can be verified that the mismatch between the curve for the simulations on

Λ501 and the curve obtained using (6.4) in Fig. 6.6 is solely due to the difference between

the corresponding curves in Fig. 6.5. If instead of using the pk,n,δ values obtained from

(6.3), we were to use those from the simulations on Λ501, then the curves match as seen

in Fig. 6.7
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Figure 6.7: Comparison of the expected total number of transmissions, normalized by the

grid size m2, obtained via simulations on Γ31 and Γ501, with the expression from (6.4)

using pk,n,δ values from simulations on Λ501, for k = 100 data packets and δ = 0.1.

Nonetheless, it is instructive to note that, for fixed values of k and δ, the expression

on the RHS of (6.4) is indeed minimized for some n. This can be verified numerically by

plotting the RHS of (6.4) using the values of θ(p) from Fig. 6.4 and the approximation

to pk,n,δ in (6.3) for a larger range of n values. Plots for k = 100, δ = 0.1 and n varying

from 100 to 500 are shown in Fig. 6.8. Observe that the curve plotted in Fig. 6.8(b)

is decreasing in n till n ≈ 180, and it increases thereafter, albeit very slowly. This

indicates that, for k = 100 and δ = 0.1, the expected number of transmissions τk,n,δ(Λm)

is minimized at n ≈ 180 for all sufficiently large grids Λm. Thus, our analysis provides

theoretical validation, at least for large grids, for the observed behaviour of τk,n,δ as a

function of n, and indicates a benefit to introducing some coding into the probabilistic
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forwarding mechanism on grids.
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Figure 6.8: The minimum forwarding probability is numerically computed from (6.3) and

the expected number of transmissions is obtained via (6.4), for k = 100 data packets and

δ = 0.1.

6.4 Proofs

In this section, we will provide the proof of Theorem 6.3.1. This will involve relating the

probabilistic forwarding mechanism on the finite grid to the site percolation mechanism

on the infinite grid. Asymptotic results for the fraction of successful receivers and the

expected total number of transmissions are then obtained using ergodic theorems.

Let Rk,n(Z2) denote the set of all nodes that receive at least k of the n coded packets

during the probabilistic forwarding protocol on Z2. As a first step, we will show that

Rk,n(Λm) and |Rk,n(Z2) ∩ Λm| are the same in expectation, in the limit as the grid size,

m, goes to infinity. In general, it is only true that Rk,n(Λm) is stochastically dominated2

by |Rk,n(Z2) ∩ Λm|, since a node in Rk,n(Z2) ∩ Λm could receive packets from the origin

through paths in Z2 that do not lie entirely within Λm.

In the percolation jargon (on Z2), Rk,n(Z2) ∩ Λm comprises those nodes of Λm that

are in the extended cluster containing the origin (Cext
0 ) in at least k out of n percolations.

2A random variable X is stochastically dominated by a random variable Y if P(X ≥ x) ≤ P(Y ≥ x)
for all x ∈ R. For non-negative random variables, this implies that E[X] ≤ E[Y ].
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Recall that a node u is in Cext
0 if either the node u or some one-hop neighbour of u is

connected to the origin through an open path. Call such an open path a conduit (for

a packet) from the origin to u. If a conduit lies completely within Λm, we call it a

Λm-conduit. We also say that, if vertex u has a conduit, it is necessarily in Cext
0 .

The nodes in Rk,n(Z2) ∩ Λm may have received some packets from the origin through

Λm-conduits, and some others through conduits that go outside Λm. We are interested

in the former, since, when operating on a finite grid Λm, nodes of Rk,n(Z2)∩Λm without

Λm-conduits cannot be successful receivers in Λm. More precisely, we are interested in

those nodes of Λm which are part of the extended cluster containing the origin through

at least one Λm-conduit, in at least k out of the n percolations. Note that these are the

nodes that receive at least k out of the n packets in the finite grid model; we denote this

collection of nodes by Rk,n(Λm). Thus, |Rk,n(Λm)| = Rk,n(Λm). We denote the remaining

nodes by Rk,n(Λm) := (Rk,n(Z2) ∩ Λm)\Rk,n(Λm). Thus, Rk,n(Λm) and Rk,n(Λm) form a

partition of Rk,n(Z2) ∩ Λm, i.e.,

Rk,n(Λm) ∩Rk,n(Λm) = ∅

and

Rk,n(Λm) ∪Rk,n(Λm) = Rk,n(Z2) ∩ Λm. (6.5)

Note that any node in Rk,n(Λm) has the property that for at least one of the packets it

receives, any conduit through which it receives that packet necessarily goes outside Λm.

Such a node is said to receive at least one packet from outside Λm. It does not receive this

packet through any Λm-conduit.

We first show that the expected fraction of nodes in Λm that receive at least one packet

from outside Λm vanishes asymptotically with the grid size m. In this direction, we will
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need the following definition: For 0 < ε < 4, let

Λm,ε :=


Λbm
√

1− ε
4c, if

⌊
m

√
1− ε

4

⌋
is odd

Λbm
√

1− ε
4c−1

, if

⌊
m

√
1− ε

4

⌋
is even


Recall that Λm was defined as Λm :=

[
−m−1

2
, m−1

2

]2 ∩Z2 when m was odd. We will think

of Λm,ε as being Λ
m
√

1− ε
4

in our calculations, and hence the number of nodes in Λm,ε is

approximately m2
(
1− ε

4

)
. We now have the following lemma.

Lemma 6.4.1. For p > pc, we have

lim
m→∞

1

m2
Eo
[
|Rk,n(Λm)|

]
= 0

SinceRk,n(Z2)∩Λm is a disjoint union of nodes inRk,n(Λm) andRk,n(Λm), the previous

lemma shows that

lim
m→∞

1

m2
Eo
[
|Rk,n(Λm)|

]
= lim

m→∞

1

m2
Eo
[
|Rk,n(Z2) ∩ Λm|

]
, (6.6)

This provides us with a mapping between the probabilistic forwarding mechanism on a

large (but finite) grid Λm and the infinite lattice Z2.

In our analysis on the grid, we will be interested in the expected value of |Rk,n(Z2) ∩

Λm)| when conditioned on the event Aext
T , defined, for any T ⊂ [n], as the event that the

origin is in the IEC in exactly the percolations indexed by T . As a corollary of Lemma

6.4.1, we also obtain

Corollary 6.4.2. For p > pc, we have

lim
m→∞

1

m2
Eo
[
Rk,n(Λm)

∣∣Aext
T

]
= 0.
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We defer the proofs of Lemma 6.4.1 and Corollary 6.4.2 to the next section. Indeed,

it has to be shown that the conditioning done in Corollary 6.4.2 is valid, which is done in

Proposition 6.5.1.

To analyze |Rk,n(Z2) ∩ Λm|, we now use the ergodic theorem for n independent copies

of the site percolation process on Z2. Recall that from Theorem 6.2.4, we had

lim
m→∞

1

m2
|Cext

k,n ∩ Λm| = θext
k,n(p) =

n∑
j=k

(
n

j

)
(θext(p))j(1− θext(p))n−j.

From this, we derive a useful fact that plays a key role in our analysis. Since the event, say

An, that the origin is in the IOC in all n percolations has positive probability (θ(p)n > 0

for p > pc), the theorem statement also holds almost surely when conditioned on An.

Hence, by the DCT, we also have

Corollary 6.4.3.

lim
m→∞

E
[

1

m2
|Cext

k,n ∩ Λm|
∣∣∣∣ An] = θextk,n(p) .

We are now in a position to prove Theorem 6.3.1, which is restated below for con-

venience. The proof is obtained by carefully relating Rk,n(Z2) to the set Cext
k,n, and then

using Corollary 6.4.3.

Theorem 6.3.1. For p > pc, we have

lim
m→∞

E
[
Rk,n(Λm)

m2

]
=

n∑
t=k

t∑
j=k

(
n

t

)(
t

j

)
(θext(p))t+j(1− θext(p))n−j.

Equivalently,

lim
m→∞

E
[
Rk,n(Λm)

m2

]
= P(Y ≥ k), (6.2)

where Y ∼ Bin(n, (θext(p))2).

Proof. Before we begin, recall from (6.5) that Rk,n(Λm) and Rk,n(Λm) form a partition of

Rk,n(Z2) ∩ Λm. In the framework of n independent site percolations, Rk,n(Z2) is the set
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of sites in Z2 that are in the extended cluster containing the origin in at least k of the n

percolations (conditioned on the origin being open).

We start with

Eo [|Rk,n(Λm)|] =
n∑
t=0

∑
T⊆[n]:
|T |=t

Eo
[
|Rk,n(Λm)|

∣∣ Aext
T

]
Po(Aext

T ). (6.7)

Our approach in the ensuing discussion would be to first obtain results for Rk,n(Z2)∩Λm,

and then transfer them to Rk,n(Λm). Motivated by our discussion following Lemma

6.4.1, consider the summand of (6.7) with Rk,n(Λm) replaced by Rk,n(Z2) ∩ Λm, i.e.,

Eo
[
|Rk,n(Z2) ∩ Λm|

∣∣ Aext
T

]
.

Suppose that |T | = t < k. Given Aext
T , the origin is in the IEC in no more than k−1 of

the percolations; hence, each site in Rk,n(Z2) must belong to the finite cluster, denoted by

C0[j], in the jth percolation, for some j /∈ T . As a result, given Aext
T , Rk,n(Z2) is contained

in the union ∪j /∈TC0[j], which is finite Po-a.s, so that lim
m→∞

1
m2 |Rk,n(Z2)∩Λm| = 0 Po-a.s..

Since Rk,n(Λm) ⊆ Rk,n(Z2)∩Λm, we also obtain lim
m→∞

Rk,n(Λm)

m2 = 0 Po-a.s.. Consequently,

by the DCT, we have for any T ⊆ [n] with |T | < k,

lim
m→∞

Eo

[
1

m2
|Rk,n(Z2) ∩ Λm|

∣∣∣∣ Aext
T

]
= 0 and lim

m→∞
Eo

[
|Rk,n(Λm)|

m2

∣∣∣∣ Aext
T

]
= 0.

(6.8)

Next, consider any summand in (6.7) with |T | = t ≥ k and Rk,n(Λm) replaced by

Rk,n(Z2) ∩ Λm as before. The sites in Rk,n(Z2) can be exactly one of two types: those

that belong to the extended cluster Cext
0 in at least k of the percolations indexed by T ;

and those that do not. Let Rk,T be the subset of Rk,n(Z2) consisting of sites of the first

type, and let Q = Rk,n(Z2) \ Rk,T . Thus,

Eo
[
|Rk,n(Z2) ∩ Λm|

∣∣ Aext
T

]
= Eo

[
|Rk,T ∩ Λm|

∣∣ Aext
T

]
+ Eo

[
|Q ∩ Λm|

∣∣ Aext
T

]
. (6.9)

Note that any site in Q must belong to Cext
0 in at least one percolation outside of T .

In particular, given Aext
T , Q is Po-a.s. finite. Thus, arguing as in the |T | < k case, we have
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lim
m→∞

Eo

[
1

m2
|Q ∩ Λm|

∣∣ Aext
T

]
= 0 and lim

m→∞
Eo

[
|Rk,n(Λm) ∩Q|

m2

∣∣∣∣ Aext
T

]
= 0.

(6.10)

Finally, note that

Eo
[
|Rk,T ∩ Λm|

∣∣ Aext
T

]
= E

[
|Rk,T ∩ Λm|

∣∣ Aext
T ∩O

]
(a)
= E

[
|Cext

k,T ∩ Λm|
∣∣ Aext

T ∩O
]

(b)
= E

[
|Cext

k,T ∩ Λm|
∣∣ AT ] ,

where AT is the event that 0 is in the IOC in exactly the percolations indexed by T , and

Cext
k,T is the set of sites of Z2 that belong to the IEC in at least k of the percolations indexed

by T . The equality labeled (a) above is due to the fact that, conditioned on Aext
T ∩ O,

Rk,T = Cext
k,T . The equality labeled (b) is because Aext

T ∩ O = AT ∩ O, and moreover,

the event that 0 is open in the percolations outside T is independent of the percolations

indexed by T .

Thus, restricting our attention to only the percolations indexed by T , we can apply

Corollary (6.4.3) with n = t to obtain lim
m→∞

E
[

1
m2 |Cext

k,T ∩ Λm|
∣∣ AT ] = θext

k,t (p). Hence,

lim
m→∞

Eo

[
1

m2
|Rk,T ∩ Λm|

∣∣ Aext
T

]
= θext

k,t (p). (6.11)

Now using (6.5) and the fact that Rk,T ⊂ Rk,n(Z2), we obtain

Rk,T ∩ Λm = Rk,T ∩Rk,n(Z2) ∩ Λm

= Rk,T ∩ (Rk,n(Λm) ∪Rk,n(Λm))

= (Rk,T ∩Rk,n(Λm)) ∪ (Rk,T ∩Rk,n(Λm)),

in which the two sets Rk,T ∩Rk,n(Λm) and Rk,T ∩Rk,n(Λm) on the RHS are disjoint (from
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(6.5)). Using this, we can write the expectation term in (6.11) as follows

Eo

[
1

m2
|Rk,T ∩ Λm|

∣∣ Aext
T

]
= Eo

[
1

m2
|Rk,n(Λm) ∩Rk,T |

∣∣∣∣ Aext
T

]
+

Eo

[
1

m2
|Rk,n(Λm) ∩Rk,T |

∣∣∣∣ Aext
T

]
. (6.12)

Using Lemma 6.4.1, we have that

lim
m→∞

Eo

[
1

m2
|Rk,n(Λm) ∩Rk,T |

∣∣∣∣ Aext
T

]
≤ lim

m→∞
Eo

[
|Rk,n(Λm)|

m2

∣∣∣∣ Aext
T

]
= 0 (6.13)

Substituting (6.12) in (6.11), and using (6.13), we get

θext
k,t (p) = lim

m→∞
Eo

[
1

m2
|Rk,T ∩ Λm|

∣∣∣∣ Aext
T

]
= lim

m→∞
Eo

[
1

m2
|Rk,n(Λm) ∩Rk,T |

∣∣∣∣ Aext
T

]
(a)
= lim

m→∞
Eo

[
1

m2
|Rk,n(Λm) ∩Rk,T |

∣∣∣∣ Aext
T

]
+ lim

m→∞
Eo

[
|Rk,n(Λm) ∩Q|

m2

∣∣∣∣ Aext
T

]
= lim

m→∞
Eo

[
|Rk,n(Λm)|

m2

∣∣∣∣ Aext
T

]
, (6.14)

where the equality labelled (a) above is obtained using (6.10). Upon multiplying (6.7) by

1
m2 , and letting m→∞, we obtain via (6.8) and (6.14):

lim
m→∞

Eo

[
Rk,n(Λm)

m2

]
=

n∑
t=k

∑
T⊆[n]:
|T |=t

θext
k,t (p)Po(Aext

T ).

Applying Proposition 6.5.1 completes the proof of the first part of the theorem. The

second part of the theorem is a consequence of the proposition below.

Proposition 6.4.4.

n∑
t=k

t∑
j=k

(
n

t

)(
t

j

)
(θext(p))t+j(1− θext(p))n−j = P(Y ≥ k),
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where Y ∼ Bin(n, (θext(p))2).

Proof. Consider Y =
∑n

i=1 XiUi, where Xi, Ui, i = 1, 2 . . . , n, are i.i.d. Ber(θext(p)) ran-

dom variables. Clearly, each productXiUi is Ber((θext(p))2), so that Y ∼ Bin(n, (θext(p))2).

Alternatively, P(Y = j) =
∑n

t=0 P(Y = j | X = t)P(X = t), with X =
∑n

i=1 Xi.

Thus,

P(Y = j) =
n∑
t=j

(
t

j

)
(θext(p))j(1− θext(p))t−j ×

(
n

t

)
(θext(p))t(1− θext(p))n−t

=
n∑
t=j

(
n

t

)(
t

j

)
(θext(p))t+j(1− θext(p))n−j.

Hence,

P(Y ≥ k) =
n∑
j=k

n∑
t=j

(
n

t

)(
t

j

)
(θext(p))t+j(1− θext(p))n−j,

from which, upon exchanging the order of the summations, we get the expression in the

statement of the proposition.

6.5 Proof of key lemmas

In this section, we collect the proofs of Lemma 6.4.1 and Corollary 6.4.2 which were

used in the proof of Theorem 6.3.1. We remark here that similar ideas are used to prove

analogous results on random geometric graphs as well.

Lemma 6.4.1. For p > pc, we have

lim
m→∞

1

m2
Eo
[
|Rk,n(Λm)|

]
= 0

Proof. Fix an ε > 0. We will find an m0 such that 1
m2Eo

[
Rk,n(Λm)

]
< ε for all m ≥ m0.

This will prove the lemma.

Any node in Rk,n(Λm) has a conduit in at least k out of the n packet transmissions on

Z2 and receives at least one packet from outside Λm. Denote by Mj the event that node j

receives at least one of the n packets from outside Λm. Recall that this means that node
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Λm,ε

Λm

0

j

Figure 6.9: Illustration of open loop in the annulus Λm\Λm,ε. Here the vertex j receives

the packet from origin 0, only along the path that is depicted.

j does not have any Λm-conduit for this packet. We then have,

Eo

[
|Rk,n(Λm)|

m2

]
≤ Eo

[
1

m2

∑
j∈Λm

1Mj

]
,

= Eo

 1

m2

∑
j∈Λm,ε

1Mj

+ Eo

 1

m2

∑
j∈Λm\Λm,ε

1Mj

 ,
where 1Mj

is the indicator random variable for the event Mj, i.e., 1Mj
= 1 if Mj occurs,

and 1Mj
= 0 otherwise. Since there are m2 − m2

(
1− ε

4

)
= m2ε

4
nodes in Λm\Λm,ε, the

latter term can be further bounded to obtain,

Eo

[
|Rk,n(Λm)|

m2

]
≤ 1

m2

∑
j∈Λm,ε

Po (Mj) +
ε

4
. (6.15)

The summation above can be split over those nodes which are on the boundary of

Λm,ε and those in the interior. The former term contains at most 4m
√

1− ε/4 nodes.

The latter term involves those nodes which receive at least one packet from outside Λm.

Hence, in at least one percolation, such nodes have a path from the origin as shown in

Fig. 6.9. This, then implies that there cannot be an open loop in the annulus Λm\Λm,ε as

indicated by the dotted line in Fig. 6.9. Let Km be the event that there is no open loop

around the origin in the annulus Λm\Λm,ε in at least one percolation. We then obtain,
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1

m2

∑
j∈Λm,ε

Po (Mj) ≤
1

m2

[
4m

√
1− ε

4

]
+
(

1− ε

4

)
Po (Km)

=
4

m

√
1− ε

4
+
(

1− ε

4

)
(1− Po (Kc

m)) . (6.16)

The event Kc
m is the event that there is an open loop in the annulus Λm\Λm,ε in each of

the n percolations. Note that this is an increasing event and so is the event O. Using the

FKG inequality (Appendix A.3), we have that

Po (Kc
m) =

P (Kc
m ∩O)

P (O)
,

(FKG)

≥ P (Kc
m)P (O)

P (O)
,

= P (Kc
m) . (6.17)

On {0, 1}Z2
, define Ann to be the event that there is an open loop in the annulus Λm\Λm,ε.

Exploiting the independence of packet transmissions, we have that P (Kc
m) = P1 (Ann)n.

Substituting (6.17) and (6.16) in (6.15), and using this result, we obtain,

Eo

[
|Rk,n(Λm)|

m2

]
≤ 4

m

√
1− ε

4
+
(

1− ε

4

)
(1− P1 (Ann)n) +

ε

4
.

For super-critical site percolation process on Z2 and a fixed ε > 0, the probability of an

open loop in the annulus Λm\Λm,ε around the origin is known to approach 1 as m → ∞

(see [80] for an idea of the proof, and [81] for specific results for site percolation) i.e.

P1(Ann) → 1 as m → ∞. Thus we can find an m0 such that each of the first two terms

on the RHS in the above expression are less than ε
4

for all m ≥ m0. This is the required

m0.

Corollary 6.4.2. For p > pc, we have

lim
m→∞

1

m2
Eo
[
Rk,n(Λm)

∣∣Aext
T

]
= 0.
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Proof. The proof is along similar lines as that of Lemma 6.4.1 but with additional con-

ditioning on the event Aext
T . More specifically, (6.16) would have Po

{
Kc
m

∣∣ Aext
T

}
on the

RHS. Notice that Aext
T is an increasing event and hence O∩Aext

T is also increasing. Thus,

Po
(
Kc
m

∣∣ Aext
T

)
=

P (Kc
m ∩ Aext

T ∩O)

P (Aext
T ∩O)

(FKG)

≥ P (Kc
m)P (Aext

T ∩O)

P (Aext
T ∩O)

= P (Kc
m) . (6.18)

Using this in (6.16) and following subsequent steps from the lemma, we get the statement

of the corollary.

It is to be justified that such conditioning can indeed be done, i.e., the event Aext
T has

a positive probability for the specified range of values of p. The following proposition

relates the probability of the event Aext
T , conditioned on the event that the origin is open

in all n percolations, to θext(p).

Proposition 6.5.1. For any T ⊆ [n] with |T | = t, we have

Po(Aext
T ) = (θext(p))t(1− θext(p))n−t.

Proof. By definition, Po(Aext
T ) = P(Aext

T | O). Note that, in a given percolation, condi-

tioned on 0 being open, the event {0 is in the IEC} is the same as the event {0 is in the IOC}.

Consequently, conditioned on O, the event Aext
T is the same as the event, AT , that the

origin is in the IOC in exactly the percolations indexed by T . Hence,

Po(Aext
T ) = P(AT | O) =

P(AT ∩O)

P(O)
.

The denominator equals pn. The numerator is the event that the origin is in the IOC in

exactly the percolations indexed by T , and is open but in a finite cluster in the remaining

n − |T | percolations. In a given percolation, the probability that the origin is open but
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in a finite cluster is p − θ(p). Thus, we have P(AT ∩ O) = (θ(p))|T |(p − θ(p))n−|T |. The

result now follows from the fact (Lemma 6.2.1) that θext(p) = θ(p)
p

.

Since θext(p) > 0 for p > pc, we have that Po(Aext
T ) > 0 as well.

6.6 Discussion

In this section, we give justifications and heuristics for some of the assumptions made in

our analysis.

6.6.1 Super-critical region

Our entire analysis for grids is based on the assumption (Assumption 1) that we operate

in the super-critical region for the site-percolation process. We give an explanation for

the same here. Recall that we want values of the forwarding probability p for which the

expected fraction of successful receivers, E[ 1
m2Rk,n(Λm)] is at least 1− δ, for some (small)

δ > 0. Hence, we need E[ 1
m2 |Rk,n(Z2) ∩ Λm|] ≥ 1 − δ. If we would like this to hold for

all sufficiently large m, then p must be such that Rk,n(Z2) has infinite cardinality. This

implies, due to the correspondence between probabilistic forwarding and site percolation

on Z2, that p must be such that there exists an infinite (open/extended) cluster in the site

percolation process. Thus, we must operate in the super-critical region p > pc. It can also

be seen from the simulation results in Figs. 6.5 and 6.6 that τk,n,δ is minimized when pk,n,δ

is in the super-critical region. Further, from Fig. 6.8(a), which provides the minimum

forwarding probability obtained numerically from (6.3), and which is used to generate

the plots in Fig. 6.8(b), it is clear that the expected total number of transmissions is

indeed minimized when operating in the super-critical region. We use these arguments as

justification for considering only the p > pc case in our analysis.

6.6.2 Insufficiently large m

We now re-visit the disparity seen in Fig. 6.6 between the τk,n,δ curves (normalized by the

grid size m2) for Λ31 and Λ501 obtained via simulations, and the corresponding curve for



Chapter 6. Grids 79

large grids Λm obtained via (6.4). As discussed previously, the numerical evaluation of

the RHS of (6.4) relies on the approximation to pk,n,δ in (6.3), which, for fixed k, n and δ,

is valid only for sufficiently large m. In the regime where the approximation is not valid

(as happens for n ≥ 130 and m = 501 in Fig. 6.6), there is a small discrepancy between

the true value of pk,n,δ(Λm) obtained via simulations, and the approximation in (6.3).

While this discrepancy is too small to be seen in the plots in Fig. 6.5, it gets blown up

when evaluating τk,n,δ using the expression in (6.4), which involves θext(p). This blow-up

is attributable to the fact that θext(p) exhibits a sharp phase transition around p = 0.6

(see Fig. 6.4), so that small changes in p near 0.6 translate to large changes in θext(p).

Interestingly, our simulations also indicate that for any value of m, the true curve for

1
m2 τk,n,δ(Λm) always lies on or above the curve for the “large-Λm approximation” obtained

via (6.4) and (6.3). We attempt an explanation for this here. We conjecture that the

large-m approximation in (6.3) is in fact an inequality valid for all m, at least when δ is

small.

Conjecture 6.6.1. Fix δ ∈ (0, 1/8). Then, for any k, n and m, we have

pk,n,δ(Λm) ≥ inf{p | Pr(Y ≥ k) ≥ 1− δ}, (6.19)

where Y ∼ Bin(n, (θext(p))2).

Thus, assuming the validity of the conjecture, the expected total number of transmis-

sions, τk,n,δ(Λm), at a forwarding probability equal to pk,n,δ(Λm) is at least as large as that

when the forwarding probability is set to be equal to the RHS of (6.3) (or (6.19)). We

next provide an argument in support of the conjecture.

Recall that

pk,n,δ(Λm) = inf

{
p

∣∣∣∣ E [Rk,n(Λm)

m2

]
≥ 1− δ

}
,

while the RHS of (6.19) is, by virtue of Theorem 6.3.1,

inf

{
p

∣∣∣∣ lim
m→∞

E
[
Rk,n(Λm)

m2

]
≥ 1− δ

}
.
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+
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2
)

Figure 6.10: Plot of the expected fraction of nodes that receive at least k = 20 out of

n = 30 packets in a 501× 501 grid. Expectation over 100 iterations.

Thus, it would suffice to show that when p is large enough to ensure that E
[
Rk,n(Λm)

m2

]
≥

1−δ, we also have limm→∞ E
[
Rk,n(Λm)

m2

]
≥ E

[
Rk,n(Λm)

m2

]
. This seems to be true: simulation

results (see Fig. 6.10) in fact indicate that, for fixed k and n, and p sufficiently above

criticality, E
[
Rk,n(Λm)

m2

]
is an increasing function of m.

The intuition behind the increasing nature of the fraction of receivers can be illustrated

via the case of k = 1 and n = 1. Consider a node v on the boundary of Λm which receives

the sole packet from outside Λm. Let us further suppose that the path through which

it receives the packet is contained within Λm+l for some small l > 0. Node v is not a

successful receiver in Λm but it is successful in Λm+l. Additionally, nodes in the Λm+l-

conduit of v (and the neighbours of these nodes) that are not successful receivers in Λm

become successful receivers in Λm+l. Moreover, if node v transmits the packet, there are

additional nodes in the interior of Λm that receive the packet. So, increasing the grid size

from m to m+ l not only leads to an increase in the number of receivers on the boundary

but also results in additional receivers in the bulk. This suggests that the expected number

of receivers in Λm increases in chunks of m2 rather than just m. Unfortunately, a rigorous

proof of this fact eludes us.

6.6.3 Tree vs. Grid

The analysis on the binary tree and the grid reveals that there is a significant benefit

to introducing coding-based redundancy into the probabilistic forwarding protocol when
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the underlying network topology is well-connected (as in a large grid), but not so when

the underlying network is a tree. The benefit is in terms of a reduction in the overall

number of transmissions needed for a successful broadcast. Here, we give a qualitative

explanation for this behaviour.

Recall that a “near-broadcast” is when the expected fraction of successful receivers is

at least 1− δ, for some small δ > 0. On a binary tree, leaves constitute (approximately)

50% of the nodes. So, for a near-broadcast on a binary tree, the expected fraction of

successful receivers among the leaf nodes should be at least 1 − 2δ. It then follows, via

linearity of expectation, that the probability of a given leaf node receiving at least k of

the n coded packets should be at least 1 − 2δ. Since there is a unique path from the

source (root node) to a leaf node on the tree, for a leaf node to receive a packet, every

node on this unique path needs to transmit the packet. Hence, for a tree with a large

height H, to ensure a near-broadcast, the forwarding probability needed for a leaf node

to receive (with high probability) at least k out of n packets must necessarily be high. Of

course, as Lemma 4.3.1 shows, the minimum forwarding probability, pk,n,δ, needed for a

near-broadcast decreases to 0 monotonically in n. However, the estimates in Section 5.2

show that, for a binary tree, pk,n,δ does not decrease quickly enough in n to offset the

increase in the number n of packets to be transmitted, resulting in a net overall increase

in the expected total number of transmissions as n increases.

On the other hand, on a grid, there are multiple paths from the source to any node. A

packet is received by a node if all the nodes on at least one of these paths transmit it. It is

the existence of these multiple paths between the source node and any other node on the

grid that causes the minimum forwarding probability pk,n,δ, for fixed k, δ and increasing

values of n, to decrease sharply at first (as seen in Fig. 6.5), which results in an initial

decrease in the expected total number of transmissions. The effect of multiple paths is

not so strong after a point, and addition of coded packets does not impact pk,n,δ much.

This causes a slowdown in the rate of decrease of the minimum forwarding probability in

n, which then results in an increase in the expected total number of transmissions.
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6.7 Conclusions

The introduction of coded packets along with the probabilistic forwarding mechanism is

beneficial on the square grid. This benefit is in terms of the expected total number of

transmissions required for a near-broadcast.

The analysis of the mechanism extends to other lattice structures as well. A careful

scrutiny of the analysis reveals ergodic theorems to be the main workhorses behind the

proofs and the numerical results. Regular lattice structures, such as the triangular or the

hexagonal grid, also admit such ergodic theorems. The expressions for the fraction of

successful receivers in Theorem 6.3.1 and the expected total number of transmissions in

(6.4) hold as is, but with the percolation probability of the lattice considered.

In order to obtain numerical results, an estimate of the percolation probability needs

to be obtained. While the percolation thresholds are known for some of the graphs (for

e.g., pc(triangular) = 1
2
), there are no known analytical expressions for θ(p). The ergodic

theorems can be used to obtain an estimate of θ(p) similar to the procedure followed for

the square grid here.

The analysis presented here suffices to justify that introducing coded packets along

with probabilistic forwarding makes it more energy-efficient. However, it does not charac-

terize the exact number of coded packets which minimizes the total number of transmis-

sions. Quantifying this optimal number of coded packets is a possible direction for future

work.
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Random graphs
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Chapter 7

Random Geometric Graphs

Modelling and analysis of the probabilistic forwarding protocol on random graphs brings

to the fore multiple new challenges. Firstly, the randomness in the graph could arise due

to the number of nodes or the way the graph is constructed (or both). Secondly, there

could be multiple ways in which a source node is selected from the random graph to

initiate the broadcasts. Lastly, the probabilistic forwarding mechanism needs a connected

underlying graph. Depending on the random graph model, this entails either working

only on the connected realizations of the graph or restricting to a connected subgraph

of the random graph. These have to be accounted for while analyzing the probabilistic

forwarding mechanism.

Ad-hoc networks are distributed networks with no centralized infrastructure. Appli-

cations involving the Internet of Things (IoT), such as healthcare, smart factories and

homes, intelligent transport etc., have lead to wide-spread presence of dense ad-hoc net-

works. Individual nodes in these networks are typically low-cost and energy-constrained,

having limited computational ability and knowledge of the network topology

Random network models have found wide acceptance in modeling wireless ad-hoc

networks. In particular, random geometric graphs (RGGs) have been used in the literature

to model spatially distributed networks (see e.g. [84] and [85]). These are generated by

scattering (a Poisson number of) nodes in a finite area uniformly at random and connecting

nodes within a pre-specified distance. The random distribution of nodes captures the

84
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variability in the deployment of the nodes of an ad-hoc network. The distance threshold

conforms to the maximum range at which a transmission from a node, with maximum

power, is received reliably. A more formal description of our network setting is provided

in the next section.

In this thesis, our primary interest will be on RGGs since they aptly capture macro-

phenomenon on deployments of ad-hoc networks. While the approach for analyzing the

mechanism is similar to that of grids, the additional intricacies brought about due to the

challenges discussed above make it more interesting.

7.1 Problem formulation

We begin by describing our setting for the specific case of random geometric graphs.

While some of the material here was presented in Chapter 3, additional notation specific

to RGGs is introduced here.

7.1.1 Network setup

A random geometric graph is parametrized by the intensity λ and the distance threshold

r. It suffices to study them by keeping one of the parameters fixed. In our treatment,

we will fix the distance parameter r to be equal to 1, and study various properties as a

function of the intensity, λ.

Construct a random geometric graph Gm with intensity λ and distance threshold r = 1

on Γm :=
[−m

2
, m

2

]2
as follows:

• Step 1: Sample the number of points, N , from a Poisson distribution with mean

λν(Γm). Here, ν(·) is the Lebesgue measure on R2. Therefore, N ∼ Poi(λm2).

• Step 2: Choose points X1, X2, · · · , XN uniformly and independently from Γm.

These form the points of a Poisson point process (see [73, Section 2.5]) Φ, and

constitute the vertex set of Gm.
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• Step 3: Place an edge between any two vertices which are within Euclidean distance

r = 1 of each other.

To carry out probabilistic forwarding over Gm, we need to fix a source. For this, we

will assume that there is a point at the origin 0 = (0, 0) ∈ R2. More specifically, a graph

G0
m is created with the underlying point process Φ0 , Φ ∪ {0}, as the vertex set and

introducing additional edges from 0 to nodes which are within B1(0), to the edge set of

Gm. Here, B1(0) (more generally, B1(v) for v ∈ R2) is a closed Euclidean ball of radius

1 centered at 0 (resp. v).

The inclusion of an additional point at the origin 0 means that all the probabilistic

computations need to be made with respect to the Palm probability given a point at the

origin. We direct the reader to [86, Ch. 1.4] for an in-depth treatment of Palm theory.

Physically, the Palm probability must be interpreted as the probability conditional on the

event that the origin is a point of the point process. We denote the Palm probability by

P0 and the expectation with respect to it by E0.

The origin here is a distinguished vertex. Broadcasts initiated from it can be received

by the nodes which are present in the component of the origin only. Denote by C0 ≡

C0(G0
m), the set of nodes in the component of the origin in G0

m. The component of the

origin in G0
m forms the underlying connected graph, which we denote by G.

7.1.2 Problem definition

Equipped with the underlying network, G, the probabilistic forwarding algorithm proceeds

as in Chapter 2, with the source at the origin 0. Denote by Rk,n(G), the number of nodes

that receive at least k out of the n coded packets. These are the successful receivers.

We sometimes denote this by Rk,n(G0
m) to explicitly bring out the dependence on m.

Given a δ > 0, we are interested in the minimum forwarding probability p, such that the

expected fraction of successful receivers is at least 1 − δ. The expectation here is over

the probabilistic forwarding protocol for a fixed realization of G. In reality, the proposed

broadcasting algorithm of probabilistic forwarding with coded packets, should give a good

performance for any realization of the underlying graph. In other words, we would want
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the expected fraction of successful receivers to be at least 1− δ, for every realization of G.

However, in our formulation we relax this condition by asking for it only in an expected

sense. More specifically, we define

pk,n,δ = inf

{
p
∣∣∣ E

[
Rk,n(G0

m)

|C0(G0
m)|

]
≥ 1− δ

}
, (7.1)

where the expectation is over both the graph G as well as the probabilistic forwarding

mechanism. Note that, from our construction, Rk,n(G) = Rk,n(G0
m) ⊆ C0(G0

m). The

number of successful receivers is normalized by the total number of vertices in G, which

is the same as the number of vertices within the component of the origin, C0(G0
m).

The performance measure of interest, denoted by τk,n,δ, is the expected total number

of transmissions across all nodes in C0, when the forwarding probability is set to pk,n,δ.

Here again the expectation is over both G and the probabilistic forwarding protocol. In

subsequent sections, we will cast the probabilistic forwarding mechanism as a marked

point process and use results from ergodic theory to obtain the expected value of the

number of successful receivers and the overall number of transmissions.

7.2 Preliminaries

In this section, we introduce the tools required to characterize the performance of the

probabilistic forwarding algorithm. Our analysis proceeds by relating the mechanism on

the finite graph G, and the RGG constructed on the whole R2 plane. The probabilistic

forwarding mechanism on the RGG is modeled using marked point processes which are

detailed here.

7.2.1 Random geometric graphs on R2

A point process on R2 is a random collection of finite or countably infinite points with no

accumulation points. It is often easier to think of a point process as a counting measure

Φ :=
∑

i εXi , where εx is the Dirac measure; for A ⊂ R2, εx(A) = 1 if x ∈ A and εx(A) = 0

if x /∈ A. Consequently, Φ(A) gives the number of points within A.
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Definition 1. (see [73, Section 2.5]) A homogeneous Poisson point process (PPP), Φ, of

intensity λ > 0 is a random set of points in R2 which satisfy the following conditions:

• For mutually disjoint regions of R2, A1, A2, · · · , Ar, the random variables denoting

the number of points in each of those regions, Φ(A1),Φ(A2), · · · ,Φ(Ar), are mutually

independent.

• For any bounded A ∈ B(R2), P(Φ(A) = l) =
e−λν(A)(λν(A))l

l!
, where ν(A) denotes

the Lebesgue measure of A.

If λ is a (non-constant) function of x ∈ R2, then Φ is an inhomogeneous Poisson point

process.

Definition 2. A random geometric graph, RGG(Φ, r) on R2, is a graph constructed

with an underlying Poisson point process Φ as the vertex set. The edge set of the graph

includes all the edges between any two points of Φ which are within Euclidean distance r

of each other. When the underlying Poisson point process Φ is homogeneous, we denote

the random geometric graph by RGG(λ, r). We will also use the notation G ∼ RGG(λ, r)

to indicate that the graph G is a random geometric graph with intensity λ and distance

threshold r.

The RGG model was first introduced by Gilbert in 1961 to study wireless networks

and is also called the Gilbert disc model. It is known that RGG(λ1, r1) and RGG(λ2, r2)

share similar connectivity properties if λ1r
2
1 = λ2r

2
2 (see [84, Chapter 7.3]). As in the

finite case, we will always take r = 1, and study different properties as a function of λ.

Our approach to analyzing the probabilistic forwarding mechanism on G is to relate

it to the probabilistic forwarding mechanism on a RGG generated on the whole R2 plane

with the origin as the source. This means that the vertex set of the RGG is a Poisson

point process, Φ, on R2. We refer the reader to [85] or [86] for the background needed on

Poisson point processes. In particular, we use the procedure outlined in [86, Section 1.3]

to construct the RGG on the whole R2 plane.

Create a tiling of the R2 plane with translations of Γm, i.e., Γi,j := (im, jm) + Γm

for i, j ∈ Z. On each such translation, Γi,j, construct an independent copy of a Poisson
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point process with intensity λ as described in steps 1 and 2 of Section 7.1.1. The random

geometric graph (G) is constructed by connecting vertices which are within distance 1 of

each other. We then say G ∼ RGG(λ, 1).

It is known that the RGG(λ, 1) model on R2 shows a phase transition phenomenon

(see e.g. [87]). For λ > λc, the critical intensity, there exists a unique infinite cluster,

C ≡ C(Φ), in the RGG almost surely. The value of λc is not exactly known, but simulation

studies such as [88] indicate that λc ≈ 1.44. The percolation probability θ(λ) is defined

as the probability that the origin is present in the infinite cluster C, i.e., θ(λ) := P0(0 ∈

C). We remark here that there is no known analytical expression for θ(λ) nor are there

good approximations. Since we are interested in large dense networks, we will assume

throughout our analysis that we operate in the super-critical region, i.e., λ > λc.

7.2.2 Marked Point Process

During the course of the probabilistic forwarding protocol on the RGG, each node decides

independently whether to forward a particular packet with probability p. Marked point

processes (MPPs) turn out to be a natural way to model such functions of an underlying

point process.

Definition 3. Let Φ =
∑

i εXi be a Poisson point process on R2. With each point Xi of Φ,

associate a mark Zi taking values in some measurable space (K,K) such that {Zi}i∈N
iid∼

Π(·). Then, Φ̃ =
∑

i ε(Xi,Zi) is called an iid marked point process on R2 × K with mark

distribution Π(·).

We now state an ergodic theorem for MPPs which is used to obtain some key results

required in the analysis of the probabilistic forwarding protocol in Section 7.3.

7.2.3 Ergodic theorem

Let (Ω,F ,P) be the probability space over which an iid marked point process Φ̃ =∑
i ε(Xi,Zi) is defined with mark distribution Π(·). Let θx : Ω → Ω, for x ∈ R2, be

the operator which shifts each point of Φ̃ by −x, i.e., θxΦ̃ =
∑

i ε(Xi−x,Zi) and let (K,K)
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be the measurable space of marks. Let f : K × Ω → R+ be a non-negative function of

the MPP. Then, by the ergodic theorem for marked random measures (see [89, Theorem

8.4.4]), we have

1

ν(Γm)

∑
Xi∈Γm

f(Zi, θXi(ω))→ λ

∫
K
E(0,z) [f(z, ω)] Π(dz) P-a.s. (7.2)

as m → ∞, where E(0,z) is the expectation with respect to the Palm probability P(0,z)

conditional on the mark, z. If f(z, ω) = f(ω), then (7.2) reduces to

1

ν(Γm)

∑
Xi∈Γm

f(θXi(ω))
m→∞−→ λE0 [f(ω)] P-a.s.. (7.3)

7.3 Probabilistic forwarding and MPPs

In this section, we formulate probabilistic forwarding mechanism using the framework of

marked point processes. Ergodic theorems for MPPs are then used to derive relevant

results which will be used to obtain estimates for pk,n,δ and τk,n,δ. It should be noted

here that all the graphs and point processes discussed in this section are on the whole R2

plane.

7.3.1 Single packet probabilistic forwarding

Consider the probabilistic forwarding of a single packet on G ∼ RGG(Φ, 1) defined on

a PPP Φ of intensity λ on R2. Let G0 be the graph created with the underlying point

process being Φ0 , Φ∪{0} as the vertex set, and introducing additional edges from 0 to

nodes which are within B1(0), to the edge set of G. We assign a mark 1 to a node if it

decides to transmit the packet and 0 otherwise. Thus, the mark space is K = {0, 1} and

Φ̃ is an iid MPP with a Ber(p) mark distribution. Note that the origin, 0, has mark 1

since it always transmits the packet. Also, the subset of nodes which have mark 1 form

a thinned point process of intensity λp, and the subset of vertices with mark 0 form a

λ(1−p)–thinned process. Denote these by Φ+ and Φ− respectively, and the corresponding
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RGGs by G+ and G−. Notice that the set of vertices of Φ+ which are in the same cluster

as the origin are the vertices which receive the packet from the source and transmit it.

Thus, the number of vertices in the cluster containing the origin in G+ (call this set of

nodes C+
0 ), is the number of transmissions of the packet.

In addition to the nodes of the cluster containing the origin in G+, the nodes of G−

which are within distance 1 from them, also receive the packet. To account for them, we

define for any cluster of nodes S ⊂ Φ+, the boundary of S as

∂S = {v ∈ Φ−|B1(v) ∩ S 6= ∅},

and the extended cluster of S to be Sext = S ∪ ∂S. Then, the receivers are the nodes in

Cext
0 . We refer to this as the extended cluster of the origin.

Our interest is in large and dense networks in which the origin is likely to be in the

infinite cluster of G0. Moreover, since we are interested in a large fraction of nodes in

the network to be successful receivers, the extended cluster of the origin has to comprise

of a significant number of nodes within Γm. In the limit of large m, this means that the

extended cluster of the origin is the infinite extended cluster (IEC), Cext, defined as the

extended cluster of C+ := C(Φ+). This also means that the transmitters correspond to

the nodes within Γm of the infinite cluster of Φ+, C+. Thus, in the thermodynamic limit,

the expected number of vertices in C0∩Γm (resp. Cext
0 ∩Γm) is well-approximated by the

expected number of vertices within Γm of the infinite cluster C+ (resp., of the IEC Cext)

for large m. We use the ergodic theorem stated in Section 7.2.3 to obtain almost sure

results for the fraction of nodes within Γm of the infinite cluster C+ and the IEC Cext in

terms of the percolation probability θ(λ).

7.3.2 Application of the ergodic theorem

Specializing the statement in (7.2) to the probabilistic forwarding of a single packet where

K = {0, 1} and the marks are independent, conditional on Φ, with distribution given by
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Π(1) = 1− Π(0) = p, we obtain,

1

ν(Γm)

∑
Xi∈Γm

f(Zi, θXi(ω))
m→∞−→ λp E(0,1)[f(1, ω)] + λ(1− p) E(0,0)[f(0, ω)] P-a.s..

(7.4)

We will now use (7.3) and (7.4) to obtain key results which will be used to analyze the

probabilistic forwarding of a single packet on R2. In particular, we substitute different

functions f in (7.3) and (7.4) to obtain the following results:

• f(z, ω) = 1. The ergodic theorem in (7.3) results in

Φ(Γm)

ν(Γm)

m→∞−→ λ P-a.s..

As a corollary, taking the reciprocals, we obtain

m2

Φ(Γm)

m→∞−→ 1

λ
P-a.s., (7.5)

which holds in our setting since λ > λc.

• f(z, ω) = z. Substituting in (7.4), we see that the sum on the LHS counts the

number of nodes which have mark 1 in Γm. Indeed, we obtain

Φ+(Γm)

ν(Γm)

m→∞−→ λp P-a.s.. (7.6)

• Let C be the unique infinite cluster in G. Using the ergodic theorem in (7.3) with

f(z, ω) = 1{0 ∈ C}, we see that the sum on the LHS counts the number of vertices

of Φ which are present in the infinite cluster. Then, we have that

|C ∩ Γm|
ν(Γm)

m→∞−→ λ θ(λ) P-a.s.. (7.7)

Using the dominated convergence theorem (DCT) and (7.5), we also have that

E
[
|C ∩ Γm|
Φ(Γm)

]
m→∞−→ θ(λ). (7.8)
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Figure 7.1: Percolation probability θ(λ) vs. intensity λ

This means that, for large m, the expected fraction of vertices of the infinite cluster

within Γm is a good approximation for the percolation probability. We use this to

obtain an empirical estimate of the percolation probability as follows. We generate

100 instantiations of the RGG(λ, 1) model on Γ251, for each value of λ between 1

and 5 (in steps of 0.01). The average number of vertices in the largest cluster within

Γm normalized by the number of vertices within Γm is computed and taken as a

proxy for the fraction of nodes within Γm of the infinite cluster. The graph obtained

is shown in Fig. 7.1. We use the values from this plot in our numerical results.

• Suppose λp > λc, so that G+ operates in the super-critical region. Let C+ be the

unique infinite cluster in G+. Since Φ+ is a thinned point process of intensity λp,

we can use the result from (7.7) for the infinite cluster C+ to obtain

|C+ ∩ Γm|
ν(Γm)

m→∞−→ λp θ(λp) P-a.s.. (7.9)

• Suppose that λp > λc and let Cext denote the extended cluster of C+, i.e. Cext =

C+∪ ∂C+. Note that since C+ is infinite, Cext is also infinite. Hence, we refer to it as

the infinite extended cluster, or IEC for short. Take f(ω) = 1(B1(0) ∩C(Φ+) 6= ∅).

Observe that {Xi ∈ Cext} = 1(B1(Xi)∩C(Φ+) 6= ∅) = f(θXiw). So, using (7.3), we
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have that

1

ν(Γm)

∑
Xi∈Γm

1{Xi ∈ Cext} m→∞−→ λP(B1(0) ∩ C(Φ+) 6= ∅) P-a.s...

By definition, P(B1(0) ∩ C(Φ+) 6= ∅) = θ(λp), the percolation probability of Φ+.

We then have,

|Cext ∩ Γm|
ν(Γm)

m→∞−→ λθ(λp) P-a.s. (7.10)

Thus, it is natural to define, θext(λ, p) := P0(0 ∈ Cext) = θ(λp).

Comparing RHS of (7.10) and (7.6) suggests an alternate viewpoint for the nodes

that are present in the IEC. On the underlying point process Φ, define new iid

marks Z ′ ∈ K = {0, 1} with Ber(θext(λ, p)) distribution. This means that a vertex

is attributed mark 1, if it is in the IEC when probabilistic forwarding is carried

out with forwarding probability p. Then, the fraction of nodes in the IEC when

marks are Z corresponds to the fraction of nodes with mark 1 when marks are Z ′.

This interpretation will be useful in proposing a heuristic approach for probabilistic

forwarding of multiple packets in Section 7.5.

7.3.3 Probabilistic forwarding of multiple packets

Consider now the probabilistic forwarding mechanism on n packets. Each node transmits

a newly received packet with probability p independently of other packets. It is required

to find the fraction of successful receivers, the nodes that receive at least k out of the

n packets. From our discussion of probabilistic forwarding of a single packet (in Section

7.3.1), for large m, the number of nodes within Γm that receive a packet from the origin

is well-approximated by the number of nodes in the IEC. In a similar way, the fraction of

successful receivers within Γm can be well approximated by the fraction of nodes within

Γm that are present in at least k out of the n IECs when probabilistic forwarding is

carried out on the RGG, G0. In this subsection, we will use the ergodic theorem and
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obtain explicit bounds on this fraction.

Equip each vertex of the point process Φ with mark Z = (Z1, Z2, · · · , Zn) ∈ K =

{0, 1}n. Here the j-th co-ordinate of the mark represents transmission of the j-th packet

on Φ. More precisely, Zj(·) ∼ Ber(p) and, for two different vertices u and v, Z(Xu) and

Z(Xv) are independent conditional on Φ. Therefore, it forms an iid marked point process.

Define Cext
k,n to be the set of nodes which are present in at least k out of the n IECs. Taking

f(z, ω) = 1{0 ∈ Cext
k,n} in the statement of the ergodic theorem, we obtain

1

ν(Γm)

∑
Xi∈Γm

1{Xi ∈ Cext
k,n}

m→∞−→ λ P0(0 ∈ Cext
k,n) P-a.s..

Denote by θext
k,n(λ, p) := P0(0 ∈ Cext

k,n). Then the above statement reads as

lim
m→∞

|Cext
k,n ∩ Γm|
ν(Γm)

= λ θext
k,n(λ, p) P-a.s.. (7.11)

The results obtained using the ergodic theorems in (7.3) and (7.4) in this section are

collected in Table 7.1 for quick reference.

7.4 Main results

In this section, we will obtain expressions for the expected fraction of successful receivers

and the expected total number of transmissions on the finite graph G based on the frame-

work that has been developed in the previous section.

While constructing G0 (as described in Section 7.3.1), the graph corresponding to

Γ0,0 can be taken to be G0
m (with additional edges from vertices in Γ0,0 to those outside

it). Alternately, G0
m can be constructed by considering a restriction of G ∼ RGG(λ, 1)

to Γm and connecting the origin to nodes within B1(0). In essence, it is true that the

distribution of nodes of G0
m and G0 ∩ Γm is the same. Recall that the graph G on which

the probabilistic forwarding mechanism is carried out, is the component of the origin in

G0
m. In light of the correspondence between the vertices of G0

m and G0 ∩Γm, the graph G

should correspond to the graph induced on the nodes within Γm, which are present in the
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Eq. f(z, ω) Result Using

(7.5) 1
Φ(Γm)

ν(Γm)

m→∞−→ λ P-a.s.. (7.3)

(7.6) z
Φ+(Γm)

ν(Γm)

m→∞−→ λp P-a.s.. (7.4)

(7.7) 1{0 ∈ C} |C ∩ Γm|
ν(Γm)

m→∞−→ λ θ(λ) P-a.s.. (7.3)

(7.9) 1{0 ∈ C+} |C+ ∩ Γm|
ν(Γm)

m→∞−→ λp θ(λp) P-a.s.. (7.3)

(7.10) 1{0 ∈ Cext} |Cext ∩ Γm|
ν(Γm)

m→∞−→ λθ(λp) P-a.s.. (7.4)

(7.11) 1{0 ∈ Cext
k,n}

|Cext
k,n ∩ Γm|
ν(Γm)

m→∞−→ λ θext
k,n(λ, p) P-a.s.. (7.4)

Table 7.1: Results from evaluating the ergodic statements in (7.3) and (7.4) for different

functions f .

cluster of the origin in G0. However, these nodes also include those which are contained

in the cluster of the origin through paths which go outside Γm, but are not connected to

the origin within Γm. We refer to these as nodes in the cluster of the origin but without a

Γm-conduit and denote them by Ĉ0,m. We make the following assumption about Ĉ0,m.

Assumption 2. lim
m→∞

|Ĉ0,m|
m2

= 0 P-a.s.

The assumption can be proved to be true over a subsequence since Markov inequality

accompanied by the convergence in mean (similar to 6.4.11), E
[
|Ĉ0,m|
m2

]
m→∞−→ 0 , gives

convergence in probability. However, a complete proof evades us.

Continuing, since C0(G0) ∩ Γm = C0(G0
m) ∪ Ĉ0,m and C0(G0

m) ∩ Ĉ0,m = ∅, from

the assumption, we obtain the following lemma.

1As in the case of a grid, the probability of there being a connected path in an annulus around Γm, is
known to tend to 1 as m→∞ in the super-critical region, λ > λc.
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Lemma 7.4.1. For λ > λc, we have

lim
m→∞

|C0(G0
m)|

λm2
= lim

m→∞

|C0(G0) ∩ Γm|
λm2

P-a.s.,

where C0(G0) is the set of nodes in the cluster of the origin in G0.

To get a handle on the fraction of nodes within Γm of C0(G0), we will need the following

lemma.

Lemma 7.4.2. Let A = {0 ∈ C(G0)}, where C(G0) is the infinite cluster of G0. For

λ > λc, we then have

lim
m→∞

|C0(G0) ∩ Γm|
λm2

= θ(λ)1A P-a.s..

Proof. We can write

|C0(G0) ∩ Γm|
λm2

=
|C0(G0) ∩ Γm|

λm2
1A +

|C0(G0) ∩ Γm|
λm2

1Ac .

Since Ac is the event that the origin is in some finite cluster, the number of nodes within

C0(G0) is finite. In the limit as m→∞, the latter term on the RHS above goes to 0. For

the first term, notice that A = {C0(G0) = C(G0)}. This gives

|C0(G0) ∩ Γm|
λm2

1A =
|C(G0) ∩ Γm|

λm2
1A.

Further, from (B.1),, we have that

lim
m→∞

|C(G0) ∩ Γm|
λm2

= lim
m→∞

|C(G) ∩ Γm|
λm2

P-a.s..
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Therefore, using (7.7) in the RHS of the above equation, we obtain that

lim
m→∞

|C0(G0) ∩ Γm|
λm2

1A = lim
m→∞

|C(G0) ∩ Γm|
λm2

1A

= θ(λ)1A P-a.s..

Note: It should be noted here that the statements in Assumption 2 and Lemmas 7.4.1

and 7.4.2 hold P0-a.s., since these are P-a.s. statements made on the underlying graph

G0.

Before we proceed, we recall the definition of the minimum forwarding probability in

(7.1):

pk,n,δ = inf

{
p
∣∣∣ E

[
Rk,n(G0

m)

|C0(G0
m)|

]
≥ 1− δ

}
,

where the expectation is over the graph G and the probabilistic forwarding mechanism.

Note that in our setting, the source, 0, always has mark 1 since it transmits all the n

packets. To be more explicit, define 1 = (1, 1, · · · , 1) to be the vector of all 1s of length

n. We denote by E(0,1), the expectation with respect to the Palm probability P0 given a

point at the origin, conditional on it having mark Z(0) = 1. In terms of this, the above

equation then translates to

pk,n,δ = inf

{
p
∣∣∣ E(0,1)

[
Rk,n(Gm)

|C0(Gm)|

]
≥ 1− δ

}
. (7.12)

Next, since we are addressing a broadcast problem, it is necessary that a large fraction

of nodes receive a packet. This, in turn necessitates that the fraction of nodes that

transmit the packet is also large. With reference to the RGG on the whole plane, this

means that the nodes in G+ need to have an infinite cluster. To allow for this, we make

the following assumption.

Assumption 3. The forwarding probability p is such that λp > λc.

Notice that the pk,n,δ values obtained from simulations in Fig. 3.2 conform to this

assumption. The assumption is discussed in slightly more detail in Section 7.6.2. We
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now obtain expressions for the minimum forwarding probability and the expected total

number of transmissions based on these two assumptions.

7.4.1 Transmissions

Consider first the transmission of a single packet. Let T (Gm) be the number of nodes

of Gm that receive the packet from the source and transmit it and let T (G) ∩ Γm be

the set of nodes within Γm that receive the packet from the source and transmit it when

probabilistic forwarding is carried out on G 2. From our construction, it follows that

T (Gm) is stochastically dominated by |T (G) ∩ Γm| since there might be nodes which

receive a packet from outside Γm and transmit it. However, it can be shown that,

lim
m→∞

E(0,1) [T (Gm)]

m2
= lim

m→∞

E(0,1) [|T (G) ∩ Γm|]
m2

.

This is because the expected fraction of transmitting nodes with no Γm-conduits dimin-

ishes as m→∞. Thus, it suffices to evaluate limm→∞
E(0,1)[|T (G)∩Γm|]

m2 to find the expected

number of transmissions for a single packet.

In the jargon of marked point processes, T (G) is the set of vertices with mark Z(·) = 1

that are in the cluster containing the origin. Note that the origin has mark 1, since it

always transmits the packet. As the vertices with mark 1 form a thinned point process,

Φ+ of intensity λp, T (G) is the set of nodes in the cluster containing the origin in G+.

In Section 7.3.1, we denoted this set by C+
0 . From Assumption 3, the graph on Φ+ is in

the super-critical regime and thus possesses a unique infinite cluster, C+. The following

theorem provides the expected size of C+
0 ∩ Γm. The proof proceeds by relating it to the

expected size of C+ ∩ Γm and using the ergodic result in (7.9). The detailed proof is

provided in Section 7.7.1.

2It is implicit from the use of Palm probabilities that the origin is the source and probabilistic for-
warding is formulated as an MPP as described in Section 7.3.1.
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Theorem 7.4.3. For λp > λc, we have

lim
m→∞

E(0,1)

[
|C+

0 ∩ Γm|
λm2

]
= p θ(λp)2.

Therefore, for large values of m, the expected number of transmissions, E0 [T (G)], can

be approximated by

E(0,1)
[
|C+

0 ∩ Γm|
]
≈ m2λp θ(λp)2.

Consider now the transmission of multiple packets. The n coded packets are trans-

mitted independently of each other. The expected total number of transmissions of all n

packets would just be n times the expected transmissions of a single packet. Therefore,

from Theorem 7.4.3, we then obtain

τk,n,δ ≈ nm2λpk,n,δ (θ(λpk,n,δ))
2 . (7.13)

7.4.2 Minimum forwarding probability

In this section, we will obtain an expression for the minimum forwarding probability.

Recall that this entails estimating E(0,1)
[
Rk,n(Gm)

|C0(Gm)|

]
, where C0(Gm) is the set of nodes in

the component of the origin in the underlying RGG on Γm and Rk,n(Gm) are the number

of nodes that receive at least k out of the n packets from the origin, which is the source.

With reference to the discussion prior to Assumption 2, C0(Gm) can be viewed as the set

of nodes in the component of the origin in G0 restricted to Γm but with only those nodes

which are connected to the origin via Γm-conduits. Rk,n(Gm) is the number of nodes

among those in C0(Gm), which are successful receivers. These arguments lets us think of

the expectation E(0,1)
[
Rk,n(Gm)

|C0(Gm)|

]
, with respect to the RGG, G0, instead of the finite RGG,

G0
m.

Since we are interested in large dense networks, it is natural to assume that the origin

is part of the infinite cluster of G0. This means that the cluster of the origin in G0
m

connects to the infinite cluster in G0 when G0
m is embedded within it. In other words, the
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event A = {0 ∈ C(G0)} occurs. The results of this section are made with this assumption,

which is stated below explicitly. Additional justification for this is provided in Section

7.6.2.

Assumption 4. The origin is part of the infinite cluster of G0.

From the discussion above and the assumption, our interest now is to estimate

E(0,1)
A

[
Rk,n(Gm)

|C0(Gm)|

]
.

The subscript A in the expectation E(0,1)
A indicates conditional expectation given that the

event A occurs. From Assumption 3, it is clear that such a conditioning can indeed be

done, since P(A) = θ(λ) > 0.

The following theorem gives the expected value of the fraction of successful receivers

in the limit as m → ∞ given the event A. Before we state the theorem, recall the

formulation of probabilistic forwarding as a marked point process in Section 7.3. Cext
k,n

was defined as the set of nodes which are present in at least k out of the n IECs and let

θext
k,n ≡ θext

k,n(λ, p) = P0(0 ∈ Cext
k,n). Additionally, define Aext

[t] to be the event that the origin

is present only in the IECs corresponding to the packets 1, 2, · · · , t.

Theorem 7.4.4. For λp > λc, we have

lim
m→∞

E(0,1)
A

[
Rk,n(Gm)

|C0(Gm)|

]
=

1

θ(λ)2

n∑
t=k

(
n

t

)
θextk,t P(0,1)(Aext

[t] ).

The proof is on similar lines as that on the grid in 6. It relies on carefully relating the

fraction of successful receivers on G to the fraction of nodes present in at least k out of

the n IECs corresponding to probabilistic forwarding on G0. An outline of the proof is

given in Section 7.7.2.

The following proposition is used to express P(0,1)(Aext
[t] ) in terms of θext

k,n.



Chapter 7. Random Geometric Graphs 102

Proposition 7.4.5.

P(0,1)
(
Aext

[t]

)
=


θextt,n − θextt+1,n(

n
t

) 0 ≤ t ≤ n− 1

θextn,n t = n

. (7.14)

Proof. The second part follows directly from the definitions of θext
n,n and the event Aext

[n] .

For the first part, define for T ⊆ [n], Aext
T to be the event that the origin is present in

exactly the IECs indexed by T . Note that

θext
k,n = P(0,1)(0 ∈ Cext

k,n) =
n∑
j=k

∑
T⊆[n]
|T |=j

P(0,1)(Aext
T ).

Since the event Aext
T depends only on the cardinality j (see Step 7 in Section 7.7.2), we

obtain

θext
k,n =

n∑
j=k

(
n

j

)
P(0,1)(Aext

[j] ).

We then have that θext
t,n − θext

t+1,n =
(
n
t

)
P(0,1)(Aext

[t] ) for 0 ≤ t ≤ n− 1, which is the statement

of the proposition.

We remark here that the statement of Theorem 7.4.4 can be used to obtain an estimate

for the expected fraction of successful receivers without the conditioning on the event A.

We write

E(0,1)

[
Rk,n(Gm)

|C0(Gm)|

]
= θ(λ) E(0,1)

A

[
Rk,n(Gm)

|C0(Gm)|

]
+ (1− θ(λ)) E(0,1)

AC

[
Rk,n(Gm)

|C0(Gm)|

]

Notice from Fig. 7.1 that θ(λ) shows a phase transition phenomenon. For the intensities

we are interested in, P(Ac) = 1 − θ(λ) is very small and the latter term in the above

equation can be neglected. This also suggests that Assumption 4 is not a very strong

requirement.

Consequently, for large m, using Theorem 7.4.4 and Proposition 7.4.5 in (7.12) yields
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20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0
Number of coded packets (n)

8.5

9.0

9.5

10.0

τ
k,
n,
δ
/λ
m

2

from simulations
using (16) with pk, n, δ from Fig. 1(a)

Figure 7.2: Comparison of the expected number of transmissions per node in the

RGG(4.5, 1) model on Γ101 obtained using (7.13) with that obtained through simulations.

Note that the pk,n,δ value for each point on both the curves are from the simulations in

Fig. 1(a).

an approximation for the minimum forwarding probability given by,

pk,n,δ ≈ inf

{
p

∣∣∣∣∣
n−1∑
t=k

θext
k,t (θ

ext
t,n − θext

t+1,n)

θ(λ)
+
θext
k,nθ

ext
n,n

θ(λ)
≥ 1− δ

}
. (7.15)

7.4.3 Comparison with simulations

We have not been able to obtain exact expressions for the probability θext
k,t (λ, p) in terms of

the percolation probability θ(λ). However, in Section 7.6.1, we provide some bounds for

it. We also develop an alternate heuristic approach, which provides comparable results

for the minimum forwarding probability obtained through simulations, in Section 7.5.

Nevertheless, the approximation for the expected total number of transmissions, τk,n,δ

in (7.13) can be evaluated with the knowledge of the minimum forwarding probability.

In Fig. 7.2, we show the plot of τk,n,δ (normalized by λm2) with n in which we use pk,n,δ

values from Fig. 3.2(a)

It is observed that for n . 26, both the curves match pretty well. However, for n > 26

they diverge. This can be attributed to the fact that as n increases, pk,n,δ decreases as

in Fig 3.2(a) and thus λpk,n,δ ↘ λc. The estimate for the percolation probability, θ(λ),

obtained via the ergodic result in (7.8) may not be accurate near the critical intensity, λc

(which is itself not exactly known). In particular, Γ251 may not be large enough for the
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ergodic result in (7.8) to kick in, as we approach λc.

Nevertheless, this provides justification to our observation that the expected number of

transmissions indeed decreases when we introduce coded packets along with probabilistic

forwarding. This comes with a catch that the minimum forwarding probability for a

near-broadcast behaves as in Fig 3.2(a). In order to establish this, we provide a heuristic

explanation for it in the next section.

7.5 A heuristic argument

In the marked point process formulation, probabilistic forwarding of multiple packets was

modeled using marks given by Z = (Z1, Z2, · · · , Zn) with Zi ∼ Ber(p) on the underlying

point process Φ. We refer to this as the original model. Motivated by the alternate inter-

pretation for the nodes in the IEC expounded at the end of Section 7.3.2, in this section,

we provide a heuristic approach for evaluating the minimum forwarding probability.

As before, let θext(λ, p) denote the probability that the origin is in the IEC for a single

packet transmission. Associate a new mark Z′ = (Z ′1, Z
′
2, · · · , Z ′n) ∈ K = {0, 1}n to each

vertex of Φ. The i−th co-ordinate of Z′ corresponds to probabilistic forwarding of the

i−th packet. The mark Z′ is chosen such that each of the i co-ordinates is either 1 with

probability θext(λ, p) (= θ(λp)) or 0 with the remaining probability, independent of the

others. Similar to the viewpoint for the single packet transmission, our idea is to use Z ′i

as a proxy for a vertex to be present in the IEC in probabilistic forwarding of the i−th

packet. We refer to this as the mean-field model.

There are two key differences between the two models defined here. Firstly, in the

original model, presence of a node in the IEC is not independent of other nodes being

present in the IEC. Whereas, in the mean-field model, Z ′i(u) and Z ′i(v) are chosen to be

independent Ber(θ(λp)) random variables for two distinct vertices u and v. Since Z ′i is

interpreted as an indicator whether a vertex is present in the i−th IEC, this independence

is enforced. Secondly, in the original model, presence of a particular node in IECs corre-

sponding to two different packets, are not independent. They are independent conditional

on Φ but not otherwise. In the mean-field model, since Z′i(v) and Z′j(v) are taken to be
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iid, this dependence is over-looked.

To analyze the mean-field model, let us use Theorem 7.2 with

f(z′, ω) =
n∑
j=k

∑
T⊆[n]
|T |=j

∏
i∈T

z′i
∏
i/∈T

(1− z′i).

The inner summation is 1 only if a node has mark 1 in exactly the co-ordinates indexed

by T (which has cardinality j). Since the outer sum goes over all j ≥ k, the value of

the function is 1 for a vertex which has mark 1, in at least k out of the n co-ordinates.

From our interpretation of Z′, the value of the function, f , for a vertex is equal to 1 if it

is present in at least k out of the n IECs of the original model. Define C ′k,n to be the set

of nodes which have mark Z ′i(·) = 1 in at least k out of the n packet transmissions in the

mean-field model. Here, C ′k,n acts as a proxy for Cext
k,n. Since f(Z′(v), ω) = 1 if v ∈ C ′k,n,

we can apply Theorem 7.2, to obtain for P almost surely

1

ν(Γm)

∑
Xi∈Γm

1{Xi ∈ C ′k,n}
m→∞−→ λ

∑
z′∈{0,1}n

P(Z′ = z′) E(0,z′)

 n∑
j=k

∑
T⊆[n]
|T |=j

∏
i∈T

Z′i
∏
i/∈T

(1− Z′i)


= λ

n∑
j=k

∑
T⊆[n]
|T |=j

∑
z∈{0,1}n

P(Z′ = z′)×
∏
i∈T

z′i
∏
i/∈T

(1− z′i).

For a fixed j and a set T with |T | = j, there is exactly one z′ such that
∏

i∈T z′i
∏

i/∈T (1−

z′i) = 1 and the probability of such a z′ is given by P(Z′ = z′) = θext(λ, p)j × (1 −

θext(λ, p))n−j. Thus, the expression above reduces to

|C ′k,n ∩ Γm|
ν(Γm)

m→∞−→ λ
n∑
j=k

∑
T⊆[n]
|T |=j

θext(λ, p)j(1− θext(λ, p))n−j

= λ

n∑
j=k

(
n

j

)
θext(λ, p)j(1− θext(λ, p))n−j P-a.s.
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(a) Minimum retransmission probability
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(b) Expected total number of transmissions

Figure 7.3: Comparison of simulation results with results obtained in (7.16) and (7.13)

on RGG(4.5, 1) on Γ101 with k = 20 packets and δ = 0.1

Define

θ′k,n ≡ θ′k,n(λ, p) =
n∑
j=k

(
n

j

)
θ(λp)j(1− θ(λp))n−j.

From our interpretation of C ′k,n as representing Cext
k,n of the original model, we use

θ′k,n instead of θext
k,n in (7.15), and after a series of manipulations, the minimum forwarding

probability obtained via this heuristic approach, p′k,n,δ, would be the minimum probability

p such that

1

θ(λ)

n∑
t=k

t∑
j=k

(
n

t

)(
t

j

)
θ(λp)t+j(1− θ(λp))n−j ≥ 1− δ.

This expression is similar to the expression that was obtained for the case of a grid in

6.3.2. Using Proposition 6.4.4, we then have

p′k,n,δ = inf

{
p
∣∣∣ P(Y ≥ k)

θ(λ)
≥ 1− δ

}
(7.16)

where Y ∼ Bin(n, (θ(λp))2).

The p′k,n,δ values obtained using this expression is compared alongside the simulation

results in Fig. 7.3(a). The expected total number of transmissions obtained via (7.13) is

plotted in Fig. 7.3(b). The simulation setup is the same as described in Section 3 for the

intensity λ = 4.5.

It is observed that the curve for the minimum forwarding probability obtained via our
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analysis tracks the simulation curve pretty well. However, the curve for the expected total

number of transmissions deviates from the simulation results substantially for larger values

of n. This can be attributed to the drastic change in θ(λ) around the critical intensity

λc. Even though there seems to be a minor difference in the forwarding probability of the

original and the mean-field model, the behaviour of the percolation probability around λc

creates a huge divide between the two transmission plots in Fig 7.3(b) . This behaviour

is similar to what was obtained on the grid in Section 6.3.2. Nevertheless, note that the

τk,n,δ curve initially decreases to a minimum and then gradually increases with n (albeit

very slowly). This shows that probabilistic forwarding with coding is indeed beneficial on

RGGs in terms of the number of transmissions required for a near-broadcast.

7.6 Discussion

7.6.1 Bounds on θextk,n

We give two lower bounds for θext
k,n(λ, p). The probability θext

k,n(λ, p) can be expressed in

terms of the events Aext
T as follows.

θext
k,n(λ, p) = P0

( ⋃
|T |≥k

Aext
T

)
=
∑
|T |≥k

P0(Aext
T )

A simple lower bound for θext
k,n(λ, p) can be obtained by taking the term corresponding to

T = [n] in the above summation.

θext
k,n(λ, p) ≥ P0(Aext

[n] ) = P0

(
n⋂
i=1

{0 ∈ Cext
∞,i}

)
(a)

≥
n∏
i=1

P0
(
0 ∈ Cext

∞,i
)

= P0
(
0 ∈ Cext

∞,i
)n
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Here, the inequality in (a) is via the FKG inequality since the events {0 ∈ Cext
∞,i} are

increasing events. This gives

θext
k,n(λ, p) ≥ θ(λp)n. (7.17)

Notice that, this along with Assumption 3 suffices to ensure that our analysis yields

non-trivial results for all values of k and n.

We now provide a second bound. For this, recall the iid marked point process Φ

equipped with the mark structure Z. Define a new marked point process ΦT with the

underlying point process Φ and marks ZT =
∏

i∈T Zi
∏

j /∈T (1 − Zj). The points with

mark 1 in ΦT , form a thinned version of Φ where each vertex is retained with probability

P(ZT = 1|Φ) = P(Zi = 1{i ∈ T} , i ∈ [n]|Φ) = p|T |(1−p)n−|T |. Thus ΦT is an iid marked

point process with Ber(p|T |(1− p)n−|T |) marks.

Let Cext(ΦT ) denote the IEC of ΦT . Notice that

⋃
|T |≥k

{0 ∈ Cext(ΦT )} ⊆ {0 ∈ Cext
k,n}.

The probability of the event in the LHS above can be found as

P0

 ⋃
|T |≥k

{0 ∈ Cext(ΦT )}

 = 1− P0

 ⋂
|T |≥k

{0 /∈ Cext(ΦT )}


= 1−

n∏
j=k

(
1− θext(λ, pj(1− p)n−j)

)(nj)
Therefore, the probability θext

k,n(λ, p) can be bounded as

θext
k,n(λ, p) ≥ 1−

n∏
j=k

(
1− θ(λpj(1− p)n−j)

)(nj) (7.18)

7.6.2 A note on our assumptions

In this subsection, we provide some justifications for the assumptions made in our analysis.

Our interest in this thesis is to broadcast information on large and dense networks. A
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basic requirement for this is that a large number of nodes in the network must be reachable

from the origin. In the sub- critical regime, i.e. λ < λc ≈ 1.44, the clusters are finite and

small. To model large dense ad-hoc networks, we need the graph to be connected on a

large area Γm. This necessitates λ to be in the super-critical regime and the component

of the origin within Γm to be large. In the limit as m→∞, this requires that the origin

be present in the infinite cluster of the underlying RGG, thus justifying Assumption 4.

Further, notice that for a near-broadcast, we need the expected fraction of successful

receivers to be close to 1, i.e., E0
[
|Rk,n(G0)∩Γm|

λθ(λ)m2

]
≥ 1 − δ for some small δ > 0 (The

denominator here is the expected number of nodes within Γm of the infinite cluster C.).

If we would like this to hold for sufficiently large m, then the forwarding probability must

be such that Rk,n(G0) has infinite cardinality. This implies that p must be such that there

is an IEC during probabilistic forwarding on G0. Now, since existence of an IEC implies

existence of an infinite cluster, the p value must ensure presence of an infinite cluster.

Thus λp > λc. This justifies Assumption 3.

It can also be seen from the simulation results in Fig. 3.2 that τk,n,δ is minimized

when the forwarding probability is such that λpk,n,δ > λc or pk,n,δ > 0.32. Further, results

obtained from our heuristic approach in Fig. 7.3(a) and Fig. 7.3(b) also suggest that

the expected total number of transmissions is indeed minimized when operating in the

super-critical regime.

7.7 Proofs

In this section, we collect the proofs of Theorem 7.4.3 and Theorem 7.4.4.

7.7.1 Proof of Theorem 7.4.3

Theorem 7.4.3. For λp > λc, we have

lim
m→∞

E(0,1)

[
|C+

0 ∩ Γm|
λm2

]
= p θ(λp)2.

Proof. The proof is along the same lines as that of Lemma 7.4.2. Denote by C+, the
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unique infinite cluster of the thinned process Φ+. Define the event A = {0 ∈ C+} =

{B1(0) ∩ C+ 6= ∅} ∩ {Z(0) = 1}. We then have

E(0,1)

[
|C+

0 ∩ Γm|
λm2

]
= E(0,1)

[
|C+

0 ∩ Γm|
λm2

1{A}
]

+ E(0,1)

[
|C+

0 ∩ Γm|
λm2

1{Ac}
]
. (7.19)

As before, the latter term goes to 0 as m→∞. This is because Ac is the event that the

cluster containing the origin C+
0 is finite. Using DCT, we obtain

lim
m→∞

E(0,1)

[
|C+

0 ∩ Γm|
λm2

1{Ac}
]

= 0 (7.20)

For the first term on the RHS of (7.19), notice that A = {C+
0 = C+}. This gives

|C+
0 ∩ Γm|
λm2

1{A} =
|C+ ∩ Γm|
λm2

1{A}. (7.21)

|C+∩Γm|
Φ(Γm)

is the fraction of vertices of the infinite cluster of Φ+ within Γm. Using (7.9), we

have that
|C+

0 ∩ Γm|
λm2

1{A} m→∞−→ p θ(λp)1{A} P-a.s.

Using DCT, the above result extends to the expected value as well, i.e.,

lim
m→∞

E
[
|C+

0 ∩ Γm|
λm2

1{A}
]

= p θ(λp)P(A)

= p2 θ(λp)2,

where the last identity is because from the definition of A, P(A) = P(B1(0) ∩ C+ 6=

∅)P(Z(0) = 1) = pθ(λp) and we have also used that {B1(0) ∩ C+ 6= ∅} and {Z(0) = 1}

are independent events with respect to P. Moreover, from Proposition B.1.1 of Appendix

B, the same holds for the expectation with respect to the Palm probability. Thus,

lim
m→∞

E0

[
|C+

0 ∩ Γm|
λm2

1{A}
]

= p2 θ(λp)2.
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The proof is complete by noting that if Z(0) = 0, then C+
0 = ∅ and so

E0

[
|C+

0 ∩ Γm|
λm2

1{A}
]

= pE(0,1)

[
|C+

0 ∩ Γm|
λm2

1{A}
]
.

7.7.2 Proof of Theorem 7.4.4

In this section, we provide a sketch of the proof for Theorem 7.4.4.

Theorem 7.4.4. For λp > λc, we have

lim
m→∞

E(0,1)
A

[
Rk,n(Gm)

|C0(Gm)|

]
=

1

θ(λ)2

n∑
t=k

(
n

t

)
θextk,t P(0,1)(Aext

[t] ).

Sketch of proof: Step 1: We first evaluate

lim
m→∞

E(0,1)

[
Rk,n(Gm)

|C0(Gm)|
1A

]
= lim

m→∞
E(0,1)

[
Rk,n(Gm)1A
|C0(Gm)|1A

]

and then divide it by P(A) = P(0 ∈ C(G0)) = θ(λ) to obtain the required conditional

expectation. We take the convention that 0
0

= 0. Note that Assumption 3 ensures that

θ(λ) > 0.

Step 2: Specializing the statement of Lemma 7.4.1 on the event A, we obtain

lim
m→∞

|C0(G0
m)|

λm2
1A = lim

m→∞

|C0(G0) ∩ Γm|
λm2

1A P-a.s..

Notice that on the event A, C0(G0) = C(G0). Using (B.1), (7.7) and the note following

Lemma 7.4.2, we have for λ > λc

lim
m→∞

|C0(Gm)|
λm2

1A = lim
m→∞

|C(G) ∩ Γm|
λm2

1A

= θ(λ)1A P0-a.s..
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Conditional on the mark of the origin Z(0) = 1, we have

lim
m→∞

|C0(Gm)|
λm2

1A = θ(λ)1A P(0,1)-a.s.

Step 3: Let Rk,n(G) be the set of nodes that receive at least k out of the n packets

from the origin when probabilistic forwarding is carried out on G. Using arguments similar

to those following Assumption 2 for nodes without Γm-conduits, we have that

lim
m→∞

E(0,1)

[
Rk,n(Gm)

λm2
1A

]
= lim

m→∞
E(0,1)

[
|Rk,n(G) ∩ Γm|

λm2
1A

]
. (7.22)

Step 4: For T ⊆ [n], let Aext
T be the event that the origin is present in exactly the

IECs indexed by T . Conditioning on the event Aext
T , we obtain

E(0,1)

[
|Rk,n(G) ∩ Γm|

λm2
1A

]
=

n∑
t=0

∑
T⊆[n]
|T |=t

E(0,1)

[
|Rk,n(G) ∩ Γm|

λm2
1A

∣∣∣∣∣Aext
T

]
P(0,1)(Aext

T ).

(7.23)

If |T | < k, then the nodes of Rk,n(G) within Γm must reside in finite clusters whose

fraction vanishes in the limit of large m. If |T | ≥ k, then it is only the nodes which are

within at least k IECs among those packet transmissions which are indexed by T , that

contribute towards the expectation. Denote such nodes by Rk,T . The remaining nodes of

Rk,n(G) within Γm, must be in at least one finite cluster and hence their fraction vanishes

in the limit. Additionally, given Aext
T for |T | > 0, the 0 must be present in the infinite

cluster of the underlying graph i.e., 1A = 1. Putting all these together, we obtain

lim
m→∞

E(0,1)

[
|Rk,n(G) ∩ Γm|

λm2
1A

]
= lim

m→∞

n∑
t=k

∑
T⊆[n]
|T |=t

E(0,1)

[
|Rk,T ∩ Γm|

λm2

∣∣∣∣∣Aext
T

]
P(0,1)(Aext

T ).

(7.24)

Step 5: Define O to be the event that the origin has mark 1 in all the n packet
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transmissions. The expectation on the RHS in the above equation can be written as

E(0,1)

[
|Rk,T ∩ Γm|

λm2

∣∣∣∣∣Aext
T

]
E0

[
|Rk,T ∩ Γm|

λm2

∣∣∣∣∣Aext
T ∩O

]
.

Rk,T is independent of the packet transmissions which are not in T . The event O can be

thus restricted to only those indices in T . However, the conditioning event Aext
T ∩ O is

then the event that 0 is in the infinite cluster C+ in the packet transmissions indexed by

T . Call this event A+
T . We then have

E(0,1)

[
|Rk,T ∩ Γm|

λm2

∣∣∣∣∣Aext
T

]
= E0

[
|Rk,T ∩ Γm|

λm2

∣∣∣∣∣A+
T

]
(7.25)

Step 6: Conditional on the event A+
T , the set Rk,T has the same distribution as the

set Cext
k,|T |, which was defined in Section 7.3.3. This gives

E0

[
|Rk,T ∩ Γm|

λm2

∣∣∣∣∣A+
T

]
= E0

[
|Cext

k,|T | ∩ Γm|
λm2

]
.

From Proposition B.1.4 of Appendix B, by taking limits as m→∞, the expectation with

respect to the Palm probability, E0, can be written in terms of the expectation E, yielding

lim
m→∞

E0

[
|Rk,T ∩ Γm|

λm2

∣∣∣∣∣A+
T

]
= lim

m→∞
E

[
|Cext

k,|T | ∩ Γm|
λm2

]
(7.26)

Step 7: Using (7.11) with n replaced by |T | = t and employing DCT, we obtain

lim
m→∞

E

[
|Cext

k,|T | ∩ Γm|
λm2

]
= θext

k,t (λ, p) (7.27)

Step 8: Clubbing the expressions from (7.25), (7.26) and (7.27) into (7.24), and using

(7.22), we obtain

lim
m→∞

E(0,1)

[
Rk,n(Gm)

λm2
1A

]
=

n∑
t=k

∑
T⊆[n]
|T |=t

θext
k,t P(0,1)(Aext

T ).
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Step 9: The event Aext
T can be expressed as

Aext
T =

⋂
i∈T

{0 ∈ Cext
i }

⋂
j /∈T

{0 /∈ Cext
j }.

Here, Cext
1 , Cext

2 , · · · , Cext
n denote the IECs corresponding to the n packet transmissions.

Since {0 ∈ Cext
i } = {B1(0) ∩ C+

i 6= ∅}, the event Aext
T does not depend on the specific

mark of 0. Furthermore, the event Aext
T does not depend on the specific choice of the set

T , but just on the cardinality |T |. This is because a relabeling of the packets does not

alter the probability of Aext
T . For a particular value of |T | = t, define

Aext
[t] =

t⋂
i=1

{0 ∈ Cext
i }

n⋂
j=t+1

{0 /∈ Cext
j }.

Notice now that the terms within the summation in Step 7, θext
k,t P(0,1)(Aext

T ) are identical

for different T with the same cardinality. Therefore,

lim
m→∞

E(0,1)

[
Rk,n(Gm)

λm2
1A

]
=

n∑
t=k

(
n

t

)
θext
k,t P(0,1)(Aext

T ).

Step 10: Putting together the results from Step 2 and Step 9 and dividing by θ(λ)

gives the statement of the theorem.



Chapter 8

Preliminary Investigation on

Random Regular Graphs

In this chapter, we discuss some aspects of the performance of the probabilistic forwarding

mechanism on random d-regular graphs. Random regular graphs (RRGs) come under a

broad class of random graphs which are specified by their degree sequences. For a graph,

with vertex set Vm = {1, · · · ,m} having m vertices, a degree sequence d = d(m) specifies

the degree of each of the m vertices. In particular, d(m) = (d1, · · · , dm), where vertex i

has degree di, and
∑m

i=1 di is even. A random graph Gm(d), with degree sequence d is

obtained by choosing a graph uniformly from all simple graphs with this degree sequence.

Probabilistic forwarding on Gm(d) is carried out by first choosing a source node uni-

formly at random from the m vertices. As in the case of random geometric graphs

(RGGs), the broadcast mechanism is employed on the component of the source, i.e., the

source transmits all n packets to its one-hop neighbours and every other node in the com-

ponent of the source forwards a packet with probability p independently of other packets

and other nodes. Denote the set of nodes in the component of the source by C0(Gm(d)).

It is now possible to define the minimum forwarding probability and the expected total

number of transmissions as in the case of the RGG. Let Rk,n(Gm(d)) be the successful

115
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receivers which receive at least k out of the n packets from the source. Then

pk,n,δ = inf

{
p
∣∣∣ E [ |Rk,n(Gm(d))|

|C0(Gm(d))|

]
≥ 1− δ

}

and τk,n,δ is the expected total number of transmissions when probabilistic forwarding is

carried out with probability pk,n,δ. The expectation in both these definitions is with respect

to the probabilistic forwarding mechanism, choice of the source and the randomness in

the underlying graph.

We remark here that practical wireless networks are seldom deployed keeping the

degree sequence in mind. Our interest in considering probabilistic forwarding on such

networks is purely for theoretical reasons. Recall from our analysis on grids and RGGs,

that the site percolation process is a faithful model of the probabilistic forwarding mecha-

nism. On graphs with a specified degree sequence, the site percolation mechanism results

in another uniformly generated graph from a degree sequence which depends on the proba-

bility with which each site is declared open. This makes such graphs amenable to analysis.

Site percolation on graphs with a given degree sequence has been studied in [90–93]. In

the following section, we put together results from these papers to characterize the proba-

bilistic forwarding algorithm on graphs with a given degree sequence, in the regime where

the number of coded packets n is large. We then specialize these results to random regular

graphs.

It should be remarked here that we only consider the problem of quantifying the

expected number of transmissions on the RRG here. Obtaining estimates for the min-

imum forwarding probability involves approximating the expected fraction of successful

receivers, which is a harder problem. We leave this for future work.

8.1 Random graphs with a specified degree sequence

A popular way to construct graphs with a given degree sequence is via the configuration

model which has been described for RRGs in Section 3.4.2. For a graph with a general

degree sequence d, create a set of points P = {1 × [d1], 2 × [d2], · · · ,m × [dm]}, where
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[di] = {1, 2, · · · , di}. This set contains
∑m

i=1 di points, each corresponding to a half-edge

(or a stub) emanating from a vertex. Let M be a uniformly random perfect matching of

the points in P. We obtain the (multi)graph, G∗m(d) by projecting P onto Vm preserving

adjacencies, i.e., for any two vertices i, j ∈ Vm, if M contains an edge between a point in

i × [di] and a point in j × [dj], then G∗m(d) contains the edge (i, j). This process might

result in a graph with multiple edges and loops, but upon conditioning on it being a

simple graph, we obtain a uniformly generated simple graph from the degree sequence, d.

Denote this graph by Gm(d).

The usual paradigm while discussing these graphs is to consider a sequence of graphs,

{Gm}m∈Z+ as done in [90]. In particular Gm ≡ Gm(d(m)) for each m ≥ 1, is a uniformly

random graph on the set Vm = {1, · · · ,m} having a degree sequence d(m) = d(m) =

(d1, · · · , dm), i.e., vertex i has degree di and
∑m

i=1 di is even. Without loss of generality,

we take d1 ≤ · · · ≤ dm and define ∆ = max1≤i≤m di = dm. Further, let Di(m) = |{j ∈

Vn : dj = i}| be the number of vertices with degree i. An asymptotic degree sequence is a

sequence (d(m))m∈Z+ where for each m ∈ Z+ the vector d(m) is a degree sequence on Vm.

An asymptotic degree sequence is sparse if for every i ∈ N, we have lim
m→∞

Di(m)/m = λi

for some λi ∈ [0, 1], where
∑

i≥0 λi = 1, and moreover

lim
m→∞

1

m

∑
i≥1

i(i− 2)Di(m) =
∑
i≥1

i(i− 2)λi <∞.

The limiting value λi, for each i, can be interpreted as the probability that a node picked

at random has degree i. We assume that every asymptotic degree sequence (d(m))m∈Z+

we work with is such that, for every m, the set of simple graphs that have d(m) as

their degree sequence is non-empty. Additionally, we denote the generating polynomial of

a sparse asymptotic degree distribution of a configuration model by G0(x) =
∑∞

i=0 λix
i.

Similar to the approach in [92] and [93], we will use generating functions to understand the

site percolation mechanism on random graphs with a sparse asymptotic degree sequence.
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8.1.1 Site percolation on Gm

On a random graph with a sparse asymptotic degree sequence, Gm, the site percolation

mechanism marks a node as open with probability p or closed with probability 1 − p.

An alternate viewpoint is to delete all edges corresponding to each vertex of Gm with

probability 1− p, independently of the other vertices in the graph. In other words, each

vertex is turned into an isolated vertex (by removing all its edges) with probability 1− p.

Note that this leaves behind a random subgraph on m vertices which we denote by G ′(m).

Let L1(G ′(m)) be the lexicographically first component of G ′(m) (this is the component

that has maximum order and the smallest vertex it contains is smaller than the smallest

vertex of every other component of maximum order; the comparison between the vertices

is by means of the total ordering on Vm ). We define

pc = sup

{
p ∈ [0, 1]

∣∣∣∣∣ |L1(G ′(m))|
m

P→ 0 as m→∞

}
.

Here
P→ denotes convergence in probability, i.e., we say that Xm

P→ 0 if for every ε > 0 we

have P(|Xm| > ε)→ 0 as m→∞. The convergence in probability is with respect to the

sequence of probability spaces indexed by the set Z+, where for each m the probability is

meant with respect to the graph G ′(m).

From [90] and [94], it is known that if ∆ ≤ n1/4 and G0(x) =
∑∞

i=0 λix
i is sparse, then

the critical probability can be expressed using the generating function as

pc =
G′0(1)

G′′0(1)
. (8.1)

8.1.2 Relating site percolation and probabilistic forwarding

In the following, we consider probabilistic forwarding with k = 1 data packet. Recall

that probabilistic forwarding corresponds to site percolation on the underlying graph but

conditioned on the source being open. From our treatment of probabilistic forwarding

on RGGs, it is clear that to quantify the expected number of transmissions of a single

packet, it suffices to look at just the open nodes of the underlying graph. Denote by
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G+ the sub-graph of G ′(m) induced by the open nodes. Since the source is chosen at

random independent of the probabilistic forwarding mechanism, we can first proceed by

performing site percolation on Gm and then choosing a source from G+. Proceeding via

this approach, we are interested in the expected size of the cluster of a randomly chosen

vertex in G+ or the typical cluster size. Furthermore, notice that L1(G ′(m)) = L1(G+),

since the additional nodes in G ′(m) are only the isolated nodes corresponding to the nodes

which are closed. These do not contribute to the largest cluster.

In the super-critical region, i.e., p > pc, there exists a giant component in G ′(m) which

contains εm nodes with high probability for large m, for some ε > 0. However, the exact

dependence of ε on p is not known. Since the source is chosen at random, it is more

likely to be in the largest cluster when operating in the super-critical regime. Thus, an

estimate of the expected size of the largest cluster is crucial in characterizing probabilistic

forwarding on the RRG. However, due to lack of accurate estimates, we leave this line of

thought for future work.

Instead, we focus on the sub-critical region, p < pc, where the size of the typical cluster

is bounded. Recall that for a fixed k and δ, pk,n,δ → 0 as n → ∞ as proved in Section

4.3. For large n, the minimum forwarding probability pk,n,δ falls below the percolation

threshold, pc. Our interest is to determine the expected cluster size of a randomly chosen

vertex (call this C+) in the sub-critical regime for the random graph G+. This has been

derived in [92] and is given by

E[|C+|] = p

[
1 +

pG′0(1)

1− pG′1(1)

]
, (8.2)

where G1(x) =
G′0(x)

G′0(1)
=
G′0(x)∑

i iλi
. Since probabilistic forwarding corresponds to site per-

colation conditioned on the source being open, the expected number of transmissions is

given by the expression in (8.2) divided by p. For n independent packet transmissions at

probability pk,n,δ, we then obtain the expected total number of transmissions to be

τk,n,δ = n

[
1 +

pk,n,δ G
′
0(1)

1− pk,n,δ G′1(1)

]
. (8.3)
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8.2 Probabilistic forwarding on random regular graphs

In this section, we specialize the results of the previous section to random regular graphs

and compare them with those obtained via simulations.

In a random d-regular graph, all vertices have degree d and hence Dd(m) = |{j ∈ Vn :

dj = d}| = m. Therefore, λi = 0 for all i 6= d and λd = 1 resulting in the generating

function of the asymptotic degree sequence G0(x) = xd. Moreover, the asymptotic degree

sequence is sparse since ∑
i≥1

i(i− 2)λi = d(d− 2) <∞.

Therefore, the results of the previous section can be applied for the case of random regular

graphs (RRGs). Firstly, the critical probability for site percolation can be found using

(8.1) to be

pc =
G′0(1)

G′′0(1)
=

1

d− 1
.

The expected total number of transmissions while operating in the sub-critical region can

be computed using (8.3) to be

τk,n,δ = n
1 + pk,n,δ

1− (d− 1)pk,n,δ
(8.4)

Notice that this does not depend on the number of nodes in Gm.

Simulation results for probabilistic forwarding of a single packet (k = 1) on a random

4-regular graph on 1000 nodes are provided in Fig. 8.1. The number of coded packets,

n, is varied from 20 to 500 so that we operate in the sub-critical region. For a random

4-regular graph, (8.4) simplifies to

τk,n,δ = n
1 + pk,n,δ

1− 3 pk,n,δ
.

The total number of transmissions obtained using this is plotted alongside the simulation

results in Fig. 8.1(b).

Notice that the curve obtained via (8.4) matches the simulations well for n > 200.
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(a) Minimum retransmission probability (b) Expected total number of transmissions

Figure 8.1: Probabilistic forwarding of a single packet on a random 4-regular graph with

1000 nodes, in the sub-critical regime. The blue dashed curves are the simulations. The

red curve in the second plot is obtained by substituting pk,n,δ values from the simulations

in (8.4).

For n < 200, the mismatch arises since the forwarding probability pk,n,δ is close to the

percolation threshold pc, which for a random 4-regular graph is, pc =
1

d− 1
=

1

3
.

8.2.1 Conclusion and future work

The analysis of the probabilistic forwarding mechanism on random regular graphs was

carried out in this chapter. The probabilistic forwarding mechanism was mapped to the

site percolation on random graphs with a prescribed degree sequence. Results on the mean

cluster size available in the literature were used to obtain the expected total number of

transmissions in the sub-critical regime. These results not only indicate that the expected

total number of transmissions required for a near broadcast increases for very large n, but

also provide accurate estimates of the same.

It is to be noted that the analysis applies to general random graphs with a given

degree sequence. Perhaps what would be more relevant is to obtain expressions for the

expected number of transmissions and the fraction of successful receivers in the super-

critical regime, which will explain the benefit to introducing coded packets with proba-

bilistic forwarding as observed in the simulations (in Section 3.4). We leave this for future

work.



Chapter 9

Summary and Future Work

In this thesis, we propose a novel probabilistic broadcast mechanism for ad-hoc networks

and analyze it on three main network topologies: trees, grids and random geometric

graphs. The proposed mechanism involves encoding ks message packets into n coded

packets at the source, such that reception of any k out of the n coded packets by a node

in the network, suffices for that node to retrieve the data transmitted in the original

ks message packets. We are interested in the minimum probability (pk,n,δ) with which

nodes in the network need to forward newly received packets so that, on the whole, a

1− δ fraction of nodes are able to retrieve the ks message packets from the source. Here,

δ > 0 is a small quantity. We termed this event a near-broadcast. The performance

metric of interest is the expected total number of transmissions for a near-broadcast at

the minimum forwarding probability, denoted as τk,n,δ.

Broadly speaking, on well-connected graphs such as grids, RGGs (in the super-critical

region) and lattice structures, the expected total number of transmissions, τk,n,δ, decreases

to a minimum and then gradually increases with the addition of coded packets, n. The

decrease indicates energy savings compared to probabilistic forwarding with no coding.

The value of the number of coded packets, n, and the value of the forwarding probability,

pk,n,δ, corresponding to the minimum are optimal in terms of the energy expenditure for

a near-broadcast. More specifically, the network when operated at these parameters has

minimal expected number of transmissions while ensuring a near-broadcast. However, on
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trees, the expected total number of transmissions does not decrease with the addition

of coded packets. In fact, it increases. This implies that introduction of coded packets

along with the probabilistic forwarding protocol degrades the performance, since there

are unnecessary transmissions of the additional coded packets.

While the qualitative performance of the probabilistic forwarding mechanism on dif-

ferent graphs is illustrative in its own right, the quantitative analysis on these topologies

is of far greater value. Similar analytical techniques can be employed on other topologies

or different variants of the probabilistic forwarding algorithm mentioned in Section 2.2.

In this direction, the contributions of this thesis are listed below.

• The analysis of the probabilistic forwarding algorithm on binary trees involved basic

concentration inequalities for random variables which have binomial distribution.

These were honed to provide tight bounds for pk,n,δ and τk,n,δ, thus showing that

coding along with probabilistic forwarding on binary trees is not beneficial in terms

of the expected number of transmissions required for a near-broadcast.

• On grids, the probabilistic forwarding mechanism was mapped to the site percolation

process on Z2 and estimates for pk,n,δ and τk,n,δ were obtained in the limit as the size

of the grid grows large. The workhorse of the analysis were the ergodic theorems

for the site percolation process. Our analysis showed that introduction of coded

packets helps to decrease the expected number of transmissions when compared to

the scenario of no coding. The techniques for the grid extend easily to other lattice

structures as well. In fact, the expressions for pk,n,δ and τk,n,δ can be directly used

as long as one has knowledge of the percolation probability, θ(p), on these lattices.

• Characterizing the performance of the proposed broadcast mechanism on random

geometric graphs was the holy grail of this thesis. Random graphs introduce multi-

ple challenges which need to be addressed. Specifically, for RGGs, the connectedness

of the underlying graph was justified by making suitable assumptions which were

in line with the application we were interested in. Challenges arising from having

a source node at the origin was addressed by using Palm theory in our analysis.
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Ideas from the grid were built upon to provide an analytical framework. The proba-

bilistic forwarding mechanism was modelled as a marked point process and ergodic

theorems on them were employed to obtain estimates of pk,n,δ and τk,n,δ. A heuristic

approach was suggested based on mean-field assumptions to compare these estimates

numerically with the simulation results. While this justifies the benefit of introduc-

ing coding with probabilistic forwarding, it also brings to the fore numerous open

questions which need to be addressed.

• On random regular graphs, we obtained preliminary results on the performance of

the probabilistic forwarding mechanism when the number of coded packets is large.

Exploiting the tree-like structure of these graphs in the sub-critical regime and using

generating functions, we were able to obtain good estimates of the expected number

of transmissions, τk,n,δ, which were valid for large n. These techniques extend to

general configuration models as well.

9.1 Future directions

In this section, we propose possible extensions to the work presented in this thesis.

9.1.1 Problems arising from the analysis

Our analysis of the probabilistic forwarding algorithm on both deterministic and random

graphs present us with numerous problems. Some of these have been highlighted in the

main text itself. We outline some others here. These problems are interesting in their

own right and their understanding will benefit mathematicians and engineers alike.

• Broadly speaking, the theory of percolation presents innumerable questions which

have not been answered for decades. These problems are easy to state but do not

have clear answers. One such example from this thesis is the value of the site

percolation threshold, pc, on grids. The exact value of pc is unknown even now,

but large-scale Monte Carlo simulations indicate that pc ≈ 0.593. Perhaps, what
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is more relevant with respect to this thesis, is to obtain analytical expressions for

the percolation probability θ(p) which can be used in our expressions for pk,n,δ and

τk,n,δ.

• Similar concerns also arise in the field of continuum percolation where the critical

intensity of the underlying point process, λc, is not exactly known. Additionally,

the percolation probability θ(λ) does not admit any analytical expression.

• Probabilistic forwarding of n packets on the RGG gave rise to the term θext
k,n =

P0(0 ∈ Cext
k,n) in the expression for the expected fraction of successful receivers.

An analytical expression for θext
k,n in terms of θext(λ, p) (which was the probability

that the origin belongs to the IEC for site percolation on the RGG), would be

useful in obtaining better estimates of pk,n,δ and τk,n,δ. Perhaps, a simpler problem

is to find the probability P0(0 ∈ C+
k,n). In terms of the marked point process

formulation, for a point process Φ0 with independent marks Z = (Z1, Z2, · · · , Zn)

where Zi ∼ Ber(p), this is the probability that the origin is present in at least k

out of the n infinite clusters. Each Zi corresponds to a site percolation process

on the underlying realization of the RGG. Conditional on the underlying RGG (or

equivalently, Φ), the events corresponding to the presence of the origin in the infinite

cluster of the ith and the jth percolation processes are independent. However, this

is not true unconditionally. Intuitively, it is expected that the presence of the origin

in the ith infinite cluster makes it more likely for it to be present in the jth infinite

cluster as well. A mathematically rigorous understanding of this phenomenon is

necessary.

• As an extension of the techniques presented here, one could consider each commu-

nication link between nodes to be noisy. Then, even though a node might forward

a packet with probability p, it will be received only by a subset of its neighbours

depending on the packet drop probability, q, induced by the noisy channel. This

can be modelled as simultaneous bond and site percolation on the underlying graph.

For lattices, this corresponds to site percolation on a random subset of the lattice.
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9.1.2 Quantifying performance on different graphs

In this section, we try to provide qualitative and quantitative justifications for the dif-

ference in behaviour of the probabilistic forwarding protocol due to different underlying

network topologies. We have already seen a comparison of the tree and grid graphs in

Section 6.6.3. We saw that the difference in behaviour can be attributed to multiple

paths from the source to a network node. Presence of multiple paths between pairs of

vertices of a graph is an indication of the connectedness of a graph. In this section, we

explore a popular metric, the conductance of the graph, which is widely used to quantify

the connectedness of a graph to explain the probabilistic forwarding mechanism. Graph

conductance has been a popular metric to quantify how well-connected a graph is. While

its predominant use has been in bounding the mixing time of Markov chains, it has also

been used to characterize rumour spreading on graphs in [95] and [96].

Definition 4. Let G = (V,E) be an undirected graph with vertex set V and edge set E.

Let S ⊂ V , and Sc = V \S. Let du denote the degree of vertex u ∈ S, and |A| denote the

cardinality of set A. Then the conductance Φ(S, Sc) is given by

Φ(S, Sc) =
|ES,Sc |∑
u∈S du

,

where ES,Sc = {(u, v) ∈ E | u ∈ S, v ∈ Sc}. The conductance of the graph G is defined as

ΦG = min
|S|≤|V |/2

Φ(S, Sc).

A small value of Φ(S, Sc) indicates that there are lot more connections between vertices

within S than between vertices within S and Sc. Naturally, if the source is present within

S, it is hard for the information to reach Sc.

Finding the conductance for any graph boils down to finding a large subset of vertices

S with minimum edges between S and Sc. For a complete graph with N vertices, KN , the

best partitioning occurs when the graphs vertices are partitioned into two equal halves,

and it has conductance ΦKN = 1
2

(
1 + 1

N−1

)
= Θ(1). For a cycle of N vertices, CN ,

the smallest conductance partitioning occurs when its left and right halves are separate
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Figure 9.1: A graph with conductance similar to a binary tree but whose behaviour to

probabilistic forwarding is grid-like.

partitions, and it has conductance ΦCN = 2
N

. In an intuitive sense this means that unlike a

cycle, a complete graph is not partitionable. Further, for a d-dimensional hypercube with

2d vertices, the partitioning set S = {x ∈ {0, 1}d|x1 = 0} minimizes the conductance of

the graph. The conductance can be computed to be 1
d

or equivalently 1
log2(N)

= Θ
(

1
log2(N)

)
(see e.g., [97]).

For the binary tree of height H with N = 2H+1 − 1 vertices, the partitioning set S is

one of the subtrees at the root. This gives a conductance of 1
N−2

= Θ(1/N) for the binary

tree. Similarly for the square grid containing N vertices, the separation with minimum

edges across it is a line parallel to one of the axes. The conductance of the grid is then

given by (see e.g., [98])
(

2N
1
2

)−1

= Θ(1/
√
N). .

This suggests that conductance can be used as a quantitative metric to distinguish

different behaviour – tree-like or grid-like – for the probabilistic forwarding mechanism.

Bolstering this intuition further is the observation that if edges are removed from the

square grid as in Section 3.4 to obtain the graph G15, the conductance computed on this

graph ΦG15 = Θ(1/N). Indeed, notice that G15 shows a tree-like behaviour (Fig. 3.13)

for probabilistic forwarding mechanism with coded packets.

However, this intuition is not completely valid. A counterexample can be obtained by
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gluing together two binary trees at the leaves as shown in Fig. 9.1. The conductance of

this graph can be computed using the cut which passes only through the edges e and f

in the figure and comprises of half the number of vertices.

Φ(S, Sc) =
2

N
= Θ(1/N).

This is similar to the conductance of a tree. However, simulations of the probabilistic for-

warding algorithm on this graph indicate that the expected total number of transmissions

on this graph decreases with the addition of coded packets. Simulations with k = 100

packets on this graph with H = 9 and δ = 0.1 are shown in Fig. 9.2. This behaviour is

akin to that of a grid.
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(a) Minimum retransmission probability
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95

96

97

98

99

τ
k,
n,
δ/N

δ= 0.1

(b) Expected total number of transmissions

Figure 9.2: Simulations on the graph shown in Fig. 9.1. Probabilistic forwarding done

with k = 100 packets.

A possible reason for this mismatch could be that conductance inherently is a good

measure of ‘bottlenecks’ in the graph. However, from our discussion in the previous

subsection, it is the number of different paths between two vertices which produces the

specific behaviour for probabilistic forwarding. This is not being captured. Nevertheless,

a higher conductance implies a well-connected underlying graph. One could possibly

exploit this to obtain a sufficient condition for a graph to show grid-like behaviour during

the probabilistic forwarding mechanism. In this thesis, we do not explore this any further,

but leave it for future work. However, based on the simulations, we make the following

conjecture.
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Conjecture 9.1.1. Consider the probabilistic forwarding mechanism with k message pack-

ets being encoded into n coded packets on a graph G of N nodes such that the conductance

ΦG ≥ c√
N

, for some constant c > 0. Then the expected total number of transmissions at

the minimum forwarding probability for a near-broadcast (pk,n,δ), shows a decrease (ini-

tially) with the addition of coded packets. Moreover, for a carefully chosen value of n and

pk,n,δ, the expected number of transmissions is minimized.

Another aspect that conductance does not capture is the location of the source node in

the graph. Different choices of the source can result in variations in the behaviour of the

probabilistic forwarding protocol. Global properties such as conductance are more likely to

be reliable metrics for characterizing probabilistic forwarding on graphs where the choice

of the source node does not affect the broadcast mechanism too much. This requirement is

satisfied, for example, by vertex-transitive graphs. These are graphs G in which for every

two vertices v1 and v2 of G, there exists an automorphism f : V (G) → V (G) such that

f(v1) = v2. Loosely speaking, this means that the graph G looks exactly the same from

the perspective of any vertex. Cayley graphs — which include as special cases complete

graphs, N -cycles, and hypercubes — provide a broad class of examples of vertex-transitive

graphs. On such graphs, pathological behaviour caused by a bad choice of the source node

is not possible. Thus, a global measure of connectedness, such as conductance, may be a

reliable predictor of the performance of probabilistic forwarding with coded packets.

9.1.3 Algorithm extension

In this section, we discuss some directions for future work for probabilistic forwarding

with coding on deterministic graphs. A plausible extension to the probabilistic forwarding

mechanism proposed in 2.2 is when the nodes in the network decide to forward a packet

with different probabilities based on their distance from the source. We formulate this

problem here on binary trees.

On a binary tree, the nodes at a particular level ` are identical. It only makes sense to

assume that all of them decide to transmit the packet with the same probability. Let the

nodes at level ` of a binary tree transmit a packet with probability p` for ` ∈ {0, 1, · · · , H}.
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As before, p0 = 1 since the source transmits all the packets. The probability that a node

at level ` ∈ {1, · · · , H} receives a packet is
∏`−1

i=0 pi , r`. Note that r1 = p0 = 1.

Additionally

P(node v at level ` receives at least k out of n packets) =
n∑
j=k

(
n

j

)
rj`(1− r`)

n−j

= P(Z` ≥ k),

where Z` ∼ Bin(n,
∏`−1

i=1 pi). The expected number of successful receivers (Rk,n) is then

given by

E[Rk,n] = 1 +
H∑
`=1

2` P(Z` ≥ k). (9.1)

Likewise, a node at level ` receives and transmits a packet with probability r`p` = r`+1.

The expected total number of transmissions for n packets is then n(1 +
∑H

`=1 2`r`+1).

We wish to find the set of forwarding probabilities which ensure a near-broadcast.

Similar to (5.3), the condition for a near-broadcast reduces to

∑H−1
`=0 2`+1P(Z`+1 ≤ k − 1)

2H+1 − 1
≤ δ.

The set of probabilities {p = (p`), ` = 1, 2, · · · , H} which satisfy the above equation

constitute the feasible set to ensure a near-broadcast. Our interest is in those feasible for-

warding probabilities, which minimizes the total number of transmissions while ensuring

a near-broadcast. This can be formulated as an optimization problem:

minimize
p

n+ n
H∑
`=1

2`r`+1

subject to
H−1∑
`=0

2`+1

2H+1 − 1
P(Z`+1 ≤ k − 1) ≤ δ,

where Z` ∼ Bin(n, r`).

This can be further reduced as follows. Since the minimization does not depend on n, it

can be removed from the objective function. This is equivalent to minimizing the number
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of transmissions of a single packet. Additionally, if it is assumed that the network nodes

possess knowledge of the height of the tree, then the nodes at level H need not transmit

the packet, i.e., pH = 0. We then have the following alternate problem:

minimize
r=(r2,··· ,rH)

1 + 2r2 + 4r3 + · · ·+ 2H−1rH

subject to 0 ≤ ri ≤ 1, for i = 2, · · · , H,

r2 ≥ r3 ≥ · · · ≥ rH ,

H−1∑
`=0

2`+1

2H+1 − 1
P(Z`+1 ≤ k − 1) ≤ δ,

where Z` ∼ Bin(n, r`).

We do not attempt to solve this problem here, but leave it as future work.

While this seems like a reasonable extension to the probabilistic forwarding protocol,

nodes in the network need to have additional information related to their relative distance

from the source. On a tree, this information is easy to procure from the source. A counter

can be added to the packet header which is updated as it traverses down the tree. Once

the packet reaches a node, the header is decoded to determine the level at which the node

is present, and the corresponding forwarding probability is used to transmit it further

down the tree.

However on other graph structures, such as grids, a node might receive the packet

from a long convoluted path. Determining the distance of the node from the source and

the forwarding probability to be used is non-trivial on such topologies.

9.1.4 Mobility

The probabilistic forwarding mechanism with coded packets is a completely decentralized

and distributed algorithm. This makes it amenable to be deployed on mobile ad-hoc

networks (MANETs) or vehicular networks (VANETs) where the individual nodes are

moving. Moreover, simulation studies indicate that mobility improves connectivity in

such networks (see e.g., [99–102]). The authors in [103] collect the numerous mobility
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models that have been discussed in the literature for ad-hoc networks. Among these, the

random waypoint model is worth a mention since it is analytically tractable (see [104]).

In this model, nodes choose a random destination point within a prescribed area, and a

random speed in a prescribed range. When they reach the destination, they remain static

for a predefined pause time and then start moving again according to the same rule. It is

known that the spatial distribution of network nodes moving according to this model is, in

general, nonuniform. The approximate stationary distribution has been obtained in [104].

It would be interesting to characterize the performance of our probabilistic broadcast

algorithm in conjunction with such mobility models.
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Appendix A

Auxiliary results for Part II

In this appendix, we collect the auxiliary results which have been used in the analysis of

the probabilistic forwarding mechanism on trees and grids.

A.1 Coupling argument

Lemma A.1.1. For ζ ∼ Bin(n, p) and 0 ≤ k ≤ n, P(ζ ≥ k) is a continuous, monotoni-

cally increasing function of p.

Proof. Note first that P(ζ ≥ k) =
∑

k′≥k
(
n
k

)
pk
′
(1−p)n−k′ , which is a polynomial in p, and

hence P(ζ ≥ k) is continuous in p. Monotonicity is by a standard coupling argument: Let

Ui, i = 1, 2, . . . , n, be i.i.d. Unif[0, 1] random variables. For p ≤ p′, let Xi = I{Ui≤p} and

X ′i = I{Ui≤p′}, so that the Xis are i.i.d. Ber(p) and the X ′is are i.i.d Ber(p′). Then, ζ =∑n
i=1 Xi is Bin(n, p), while ζ ′ =

∑n
i=1X

′
i is Bin(n, p′). By construction, Xi(Ui) ≤ X ′i(Ui),

and hence, ζ ≤ ζ ′ almost surely. Thus, P(ζ ≥ k) ≤ P(ζ ′ ≥ k).

A.2 Bounds for the CDF of a Binomial random vari-

able

The following theorem from [105] gives tight bounds on the CDF of a binomial random

variable in terms of the standard normal CDF.

134
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Theorem A.2.1 ([105], Theorem 1). Let 0 ≤ x, p ≤ 1 and define D (x || p) := x ln x
p

+

(1 − x) ln 1−x
1−p , sgn(x) := x

|x| for x 6= 0, and sgn(0) := 0. Let {Cn,p(k)}nk=0 be defined as

follows:

Cn,p(0) = (1− p)n, Cn,p(n) = 1− pn,

Cn,p(k) = Φ

(
sgn

(
k

n
− p
)√

2nD

(
k

n
|| p
))

, 1 ≤ k < n.

For a binomial random variable X ∼ Bin(n, p), for every k = 0, 1, ..., n− 1, and for every

p ∈ (0, 1),

Cn,p(k) ≤ P(X ≤ k) ≤ Cn,p(k + 1).

Equalities hold for k = 0 and k = n− 1 only.

A.3 FKG inequality

Let (Ω,F ,P) be a probability space and let Ω be equipped with a partial order ≤. We say

that an event A in F is increasing if 1A(ω) ≤ 1A(ω′) whenever ω ≤ ω′, where 1A is the

indicator function of A. We call A decreasing if its complement Ac is increasing. More

generally, a random variable X is called increasing if X(ω) ≤ X(ω′) whenever ω ≤ ω′; X

is called decreasing if −X is increasing.

Theorem A.3.1 (Fortuin, Kasteleyn, and Ginibre (1971), Harris (1960)). (see [80, Chap-

ter 2])

• If X and Y are increasing random variables such that E[X2] <∞ and E[Y 2] <∞,

then

E[XY ] ≥ E[X] E[Y ].

• If A and B are increasing events, then

P(A ∩B) ≥ P(A) P(B).
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Similar inequalities are valid for decreasing random variables and events. For example,

if X and Y are both decreasing then −X and −Y are increasing, giving that E[XY ] ≥

E[X] E[Y ], so long as X and Y have finite second moments. Similarly, if X is increasing

and Y is decreasing, then we may apply the FKG inequality to X and −Y to find that

E[XY ] ≤ E[X] E[Y ].

As an example, consider site percolation on Z2. Here Ω = {0, 1}Z2
and the partial

order is defined as ω1 ≤ ω2 if ω1(v) ≤ ω2(v) for all v ∈ Z2. A vertex u is said to be open

if ω(u) = 1. Let u, v ∈ Z2, and recall the definition u ←→ v, which meant that u and v

are connected by a path of open vertices. The event {0←→ u} and the random variable

measuring the number of different paths between 0 and u are increasing.

Let {u←→∞} denote the event that u is in the infinite cluster. Then

P({u←→∞}) ≥ P({u←→ v} ∩ {v ←→∞})
FKG

≥ P({u←→ v}) P({v ←→∞}).

Similarly, we can repeat the same calculation with u and v interchanged. From this,

we can deduce that if P({u ←→ ∞}) > 0, then P({v ←→ ∞}) > 0 and vice versa.

Thus, it does not make a difference whether one defines the critical probability for site

percolation as pc = inf{p | P({u ←→ ∞}) > 0} or pc = inf{p | P({v ←→ ∞}) > 0}.

Owing to the translation invariance of the Z2 lattice and the probability measure P, it

is customary to take the percolation probability θ(p) = P(0 ∈ C) = P(0 ←→ ∞) giving

pc = inf{p | θ(p) > 0}.
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Auxiliary results for Part III

In this appendix, we collect the auxiliary results which have been used in the analysis of

the probabilistic forwarding mechanism on random geometric graphs.

B.1 Palm probabilities

In this section, we prove three main propositions which will be used in the analysis of the

probabilistic forwarding protocol. Let G ∼ RGG(λ, 1) be a random geometric graph on

R2 defined on some probability space (Ω,F ,P). The underlying Poisson point process,

Φ, is of intensity λ. The intensity λ is such that we operate in the super-critical region,

i.e., λ > λc. Let C ≡ C(Φ) be the unique infinite cluster in G. Let Φ0 = Φ ∪ {0} denote

the Palm version of Φ and let C(Φ0) be the infinite cluster in it. Denote by P0, the Palm

probability of the origin and E0, the expectation with respect to P0. We now have the

following proposition relating the expected value with respect to E and E0 of the fraction

of vertices in C within Γm.

Proposition B.1.1.

lim
m→∞

E0

[
|C ∩ Γm|
m2

]
= lim

m→∞
E
[
|C ∩ Γm|
m2

]

137
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Proof. Let C1, C2, · · · , CK be finite components in G which intersect the ball of radius 1

centered at the origin, i.e., Ci ∩ B1(0) 6= ∅, ∀i ∈ {1, 2, · · · , K}. Since vertices from

distinct finite components Ci and Cj, should be at least at a distance of 1 from each

other, the number of such components is bounded. In particular, K is a random variable

with K ≤ 7 a.s.. The infinite clusters in the RGG(Φ0, 1) and RGG(Φ, 1) models can be

related in the following way:

C(Φ0) =

C(Φ) ∪ C1 ∪ · · · ∪ CK ∪ {0} if C ∩B1(0) 6= ∅

C(Φ) if C ∩B1(0) = ∅

Using this, we can write

|C(Φ0) ∩ Γm|
m2

=
|C(Φ) ∩ Γm|

m2

+
K∑
i=1

|Ci ∩ Γm|
m2

1{C ∩B1(0) 6= ∅}

Since K ≤ 7 a.s. and |Ci| <∞ for all i = 1, 2, · · · , K, we have

K∑
i=1

|Ci ∩ Γm|
m2

m→∞−→ 0 P-a.s..

Thus, we deduce that

lim
m→∞

|C(Φ0) ∩ Γm|
m2

= lim
m→∞

|C(Φ) ∩ Γm|
m2

P-a.s. (B.1)

Since the random variables involved are bounded by 1, applying the dominated conver-

gence theorem (DCT) gives the desired result.

Corollary B.1.2.

lim
m→∞

E0

[
|C ∩ Γm|
m2

]
= λθ(λ)

Proof. This directly follows from the previous proposition and (7.7).

Next, consider the formulation of the marked point process described in Section 7.3.
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Let Cext ≡ Cext(Φ) be the infinite extended cluster (IEC). We now show the following

proposition relating Cext and the Palm version of Cext.

Proposition B.1.3.

lim
m→∞

E0

[
|Cext ∩ Γm|

m2

]
= lim

m→∞
E
[
|Cext ∩ Γm|

m2

]

Proof. The proof is along the same lines as that in Proposition B.1.1. Let C1, C2, · · · , CK
be finite components in G+ which intersect the ball of radius 1 centered at the origin,

i.e., Ci ∩ B1(0) 6= ∅, ∀i ∈ {1, 2, · · · , K}. Here again K ≤ 7 a.s.. Now, suppose that

C+ ∩ B1(0) 6= ∅, then regardless of the mark of the origin, it is true that Cext(Φ0) ⊆

Cext(Φ) ∪ Cext
1 ∪ · · · ∪ Cext

K (with equality being true when the origin has mark 1). If on

the other hand C+ ∩B1(0) = ∅, then Cext(Φ0) = Cext(Φ). Using this, we can write

|Cext(Φ0) ∩ Γm|
m2

≤ |C
ext(Φ) ∩ Γm|

m2

+
K∑
i=1

|Cext
i ∩ Γm|
m2

1{C+ ∩B1(0) 6= ∅}.

Note that, if Ci is a finite cluster, then so is Cext
i and hence the summation on the RHS

above tends to 0 as m→∞. Since we trivially have that

|Cext(Φ) ∩ Γm|
m2

≤ |C
ext(Φ0) ∩ Γm|

m2
,

in the limit of large m, the fraction |Cext(Φ0)∩Γm|
m2 is sandwiched between the two limits

yielding

lim
m→∞

|Cext(Φ0) ∩ Γm|
m2

= lim
m→∞

|Cext(Φ) ∩ Γm|
m2

P-a.s.

Using DCT gives the statement of the proposition.

A similar argument extends to Cext
k,n as well, which is stated in the following proposition.
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Proposition B.1.4.

lim
m→∞

E0

[ |Cext
k,n ∩ Γm|
m2

]
= lim

m→∞
E
[ |Cext

k,n ∩ Γm|
m2

]

Proof. Firstly, note that

|Cext
k,n(Φ0) ∩ Γm|

m2
≥
|Cext

k,n(Φ) ∩ Γm|
m2

. (B.2)

The nodes in Cext
k,n(Φ0) can be related to those in Cext

k,n(Φ) in the following way. Let

C+
1 , C

+
2 , · · · , C+

n denote the infinite clusters corresponding to each of the n packets and

let Ci,1, Ci,2, · · · , Ci,Ki denote the finite clusters corresponding to the i−th packet which

intersect the ball of radius 1 at the origin. Here again, Ki ≤ 7 a.s. for all i. Proceeding

with similar reasoning as that of Proposition B.1.3, we can obtain

|Cext
k,n(Φ0) ∩ Γm|

m2
≤
|Cext

k,n(Φ) ∩ Γm|
m2

+
∑
i∈[n]

C+
i ∩B1(0)6=∅

Ki∑
j=1

|Cext
i,j ∩ Γm|
m2

(B.3)

The summation on the RHS is a finite sum with at most 7n terms with each term consisting

of fraction of nodes in some finite cluster. By taking limits as m → ∞, this fraction

vanishes. Therefore the fraction
|Cext
k,n(Φ0)∩Γm|

m2 is sandwiched between the two limits in

(B.2) and (B.3) yielding

lim
m→∞

|Cext
k,n(Φ0) ∩ Γm|

m2
= lim

m→∞

|Cext
k,n(Φ) ∩ Γm|

m2
P-a.s.

Using DCT gives the statement of the proposition.
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