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Lecture overview
⋆ Part 1: Complex networks and network science.

⋆ Part 2: Random graph models for complex networks.

⋆ Part 3: Local and ‘almost local’ structure of random graphs.

⋆ Part 4: Small- and ultra-small-world random graphs.

⋆ Part 5: Competition and fake news on scale-free random graphs.

Will extensively use Mentimeter to keep all of you en-
gaged. Do participate to improve your learning!



Part 1:

Complex networks
and network science



Complex networks

Burst of activity in past 25 years.
See books Newman (2010) or Barabási
(web book) for examples and theory.

Networks come in different flavours:
Opte project, Barrett Lyon, 2010]

▷ Social networks: Acquaintances, sexual relations,...
▷ Information networks: Collaboration graphs, WWW,...
▷ Technological networks: Internet, power/telephone grids,...
▷ Biological networks: Food webs, neurons, protein interactions,...

Attention focussing on unexpected commonality.



Graphs or networks

Network is another word for graph.
Graphs are mathematical constructs to

study relations between objects.

Graph consists of vertices (= nodes, sites) and
edges (= bonds).

⋆ Vertices: elements of whom we study
their relations;
⋆ Edges: relations between elements:
cables, friendships, who eats who, hyperlink,...

Edge is building block of relational data



Graph terminology

Degree vertex is number of edges it is in:
its number of ‘friends’

Graph distance between pair of ver-
tices is minimal number of edges
needed to hop between them.



Networks are sparse
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Scale-free paradigm
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▷ Straight line: proportion pk vertices of degree k satisfies pk = ck−τ .

▷ Empirical data finds τ ∈ (2, 3): highly-variable number of neighbours



Scale-free paradigm
Degree sequence (p1, p2, p3, . . .) of graph:

p1 is proportion of elements with degree 1,

p2 is proportion of elements with degree 2,

...
pk is proportion of elements with degree k.

Then
pk ≈ ck−τ ,

precisely when
log pk ≈ log c− τ log k.

Approximate linearity log pk and log k



Maximal degree

How large is maximum of n i.i.d. random vari-
ables with probability mass function pk = ck−τ?



Network inhomogeneity
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Maximal degrees in 727 networks larger than 10,000 from KONECT
Linear regression gives log dmax = 0.742 + 0.519 log n.

Consistent with τ ≈ 2.93 on average.



Small-world paradigm

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

distance

pr
op

or
tio

n
of

pa
irs

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

distance

pr
op

or
tio

n
of

pa
irs 2003

Distances in Strongly Connected Component WWW and IMDb in 2003.



Friendship paradox
Networking paradox [Scott L. Feld (1991)]:

Why your friends have more friends than you do!

Wikipedia: In Twitter, the people a
person follows almost certainly have
more followers than they. This is be-
cause people are more likely to follow
those who are popular than those who
are not.

Random individual has k friends with probability equal to
proportion of vertices with degree k.



Friendship paradox
Average number of friends random indi-
vidual equals average degree network.

Wikipedia: The average number of friends that a typical friend
has can be modeled by choosing, uniformly at random, an edge
of the graph and an endpoint of that edge, and again calculating
the degree of the selected endpoint.

▷ Paradox: Average degree person in random friendship
turns out to be strictly larger than average degree.

In math formulas, with D⋆ degree of person in random friendship,

E[D⋆] = E[D] +
Var(D)

E[D]
> E[D].

Your friends have more friends than you do!?



Friendship paradox

Are you convinced by above argument? I
think of myself as random individual...



Friendship paradox

Take vertex uniformly at random, then take one
of its neighbours and inspect its degree. De-
note degrees at both sides (D1, D2). Then,

▷ D1 has same distribution as D, but
▷ D2 does not have same distribution as D⋆!

Still it can be shown that

E[D2] > E[D]!

Your friends have more friends than you do!



Centrality measures
▷ Closeness centrality:
Measures to what extent vertex can reach others using few hops.
Vertices with low closeness centrality are central in network.

▷ Betweenness centrality:
Measures extent to which vertex connects
various parts of network.

Betweenness large for bottlenecks.

▷ PageRank:
Measures extent to which vertex is visited by random walk.
Used in Google to rank importance in web pages.



PageRank

▷ Page Rank. Solution R⃗ to

Ri = α
∑
j→i

Rj

D(out)

j

+ (1− α).

Used in Google to rank importance in web pages:

Bringing order to the web!

Can also be seen as n times stationary distri-
bution of bored surfer on network.



Network statistics
(Global) Clustering coefficient:

C =
3× number of triangles

number of connected triplets
.

Proportion of friends that are friends of one another.

Assortativity coefficient:

ρ =

1
|En|

∑
ij∈En

didj −
(

1
|En|

∑
ij∈En

di

)2

1
|En|

∑
ij∈En

d2i −
(

1
|En|

∑
ij∈En

di

)2 .

Correlation between degrees at either end of edge.

Such measures are quite different across real-world networks.



Network science
▷ Complex networks modelled using

random graphs.

▷ Network functionality modelled by stochastic processes on, or
algorithms for, them.

▷ A plethora of examples:

Disease spread
Information diffusion
Consensus reaching

Synchronization
Robustness to failures
Information retrieval

▷ Network algorithms: PageRank, community detection,...

▷ Prominent part of applied math for decades to come.



Part 2:

Random graph models
for complex networks



Model jungle

Who of you have heard of following models?



Model jungle
Plethora of sparse random graph models have been invented:

⋆ Static models:
Erdős-Rényi random graph, inhomogeneous random graph
(IRG), configuration model (CM), exponential random graphs,...

⋆ Dynamic models:
Growing models such as preferential attachment model (PAM),
copying models, as well as dynamic versions of above models
of fixed size...

Extensions:
⋆ Directed random graphs: directed IRGs and CMs,...;
⋆ Models with communities: stochastic block models, random inter-
section graphs, hierarchical CMs;
⋆ Geometric random graphs: hyperbolic random graphs, geometric
random graphs, geometric IRGs, geometric PAMs.



Model jungle
Plethora of sparse random graph models have been invented:

⋆ Static models:
Erdős-Rényi random graph, inhomogeneous random graph
(IRG), configuration model (CM), exponential random graphs,...

⋆ Dynamic models:
Growing models such as preferential attachment model (PAM),
copying models, as well as dynamic versions of above models
of fixed size...

Need techniques to deal with many models at once:
local convergence.



These talks
In this lecture series, we focus on the following models:

Static models:
Graph has fixed number of elements.

Configuration model and
Inhomogeneous random graphs

Dynamic models:
Graph has growing size:

Preferential attachment model



Erdős-Rényi
Vertex set [n] := {1, 2, . . . , n}.

Erdős-Rényi random graph is random subgraph of complete graph
on [n] where each of pair of vertices is occupied independently with
same probability.

Simplest imaginable model of a random graph.

▷ Attracted tremendous attention since introduction 1959, mainly
in combinatorics community.

Probabilistic method (Erdős et al).

Egalitarian: Every vertex has equal connection probabilities.
Misses hub-like structure of real-world networks.



Erdős-Rényi degrees

What is expected degree of Erdős-Rényi random
graph with parameter p?



Configuration model
▷ n number of vertices;
▷ d = (d1, d2, . . . , dn) sequence of degrees is given.

Here, chosen degrees could be those of real-world network, or gen-
erated by some random process.
▷ Highly-variable degrees: similar pictures as real-world networks:
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Graph construction CM
▷ Assign dj half-edges to vertex j.

Pair half-edges to create edges as follows:

a) Number half-edges from 1 to ℓn in any order.

b) Connect first half-edge at random with another half-edge.

c) Continue with second half-edge (when not paired with
first) and so on, until all half-edges are paired.

▷ We denote resulting graph by CMn(d).



Order?

Does the order in which we pair half-edges matter?



Simple CMs
Proposition I.7.7. Let G = (xij)i,j∈[n] be multigraph on [n] s.t.

di = xii +
∑
j∈[n]

xij.

Then, with ℓn =
∑

v∈[n] dv,

P(CMn(d) = G) =
1

(ℓn − 1)!!

∏
i∈[n] di!∏

i∈[n] 2
xii

∏
1≤i≤j≤n xij!

.

Consequently, number of simple graphs with degrees d equals

Nn(d) =
(ℓn − 1)!!∏

i∈[n] di!
P(CMn(d) simple),

and, conditionally on CMn(d) simple,

CMn(d) is uniform random graph with degrees d.



Probabilistic method
⋆ Configuration model conditioned on
not having any self-loops and multiple
edges is uniform random graph with pre-
scribed degrees.

⋆ Probability that CM has no self-loops
and multiple edges converges when

1

n

∑
i∈[n]

d2i converges.

Can be used to approximate how many such graphs exist

Probabilistic method
= Erdős magic!



Generalized random graph
Attach edge with probability pij between vertices i and j, where

pij =
wiwj

ℓn + wiwj
, with ℓn =

∑
i∈[n]

wi,

different edges being independent [Britton-Deijfen-Martin-Löf 05]

Resulting graph is denoted by GRGn(w).

▷ Retrieve Erdős-Rényi RG with p = λ/n when wi = nλ/(n− λ).

Interpretation: wi is close to expected degree vertex i.

▷ Sparse GRG:
With Wn weight of uniform vertex, we assume that Wn

d−→ W for
limiting random variable W.



Preferential attachment
[Albert-Barabási (1999), (49596 citations Google scolar)]

At time n, single vertex is added with m edges emanating from it.
Probability that edge connects to specific vertex is proportional to
degree of vertex at that time, plus a constant, i.e., proportional to

Di(n− 1) + δ,

where Di(n) is degree vertex i at time n, δ > −m is parameter.

Yields power-law degree se-
quence with exponent τ > 2,

where value of τ depends on pa-
rameters model as τ = 3 + δ/m.
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Preferential attachment

What makes preferential attachment model
mathematically difficult?



Part 3:

Local and ‘almost local’
structure of random graphs



Local convergence
Has been proved for many sparse random graph models.

Local convergence implies

▷ one-sided law of large numbers |Cmax|/n;
▷ convergence proportion neighborhoods of specific shape;
▷ convergence various other functionals:

Examples include PageRank distribution, and under more re-
strictions, log partition function Ising model, while through a lot
more work, densest subgraph.

Local convergence gives good starting point analysis
for many more graph properties.



Preliminaries
⋆ Graph: G = (V (G), E(G)) with V (G) vertex set, E(G) edge set.

⋆ Rooted graph: (G, v) with G graph and v ∈ V (G) vertex or root.

⋆ Neighbourhood: r-neighbourhood B(G)
r (v) of v ∈ V (G) is rooted

subgraph induced by all vertices at distance at most r from root v.

⋆ Isomorphisms: Two rooted graphs (G1, v1), (G2, v2) are isomorphic
when there is bijection ϕ : V (G1)→ V (G2) mapping edges to edges
and root to root. Denoted (G1, v1) ≃ (G2, v2).

⋆ Metric: Distance of rooted connected graphs (G1, v1), (G2, v2) is

dG⋆

(
(G1, v1), (G2, v2)

)
=

1

1 +R⋆
,

where R⋆ is largest value for which B
(G1)
r (v1) ≃ B

(G2)
r (v2), and

G⋆ is space of rooted graphs modulo isomorphisms.

[Metric space well defined: G⋆ Polish space under this metric [RGCNII, Chapter 2].]



Local convergence
⋆ Random graph sequence is (Gn)n≥1 satisfying |V (Gn)| → ∞.

[Will often take V (Gn) = [n] ≡ {1, . . . , n}.]

⋆ Local weak convergence holds when, with on chosen uniformly
from V (Gn),

E[h(Gn, on)] =
1

|V (Gn)|
∑

v∈V (Gn)

E[h(Gn, v)]→ Eµ̄

[
h(G, o)

]
,

for any bounded and continuous functions h : G⋆ → R and µ̄ some
probability measure on G⋆. [Benjamini-Schramm (2001), Aldous-Steele (2004).]

⋆ Local convergence in probability holds when, instead,

E[h(Gn, on) | Gn] =
1

|V (Gn)|
∑

v∈V (Gn)

h(Gn, v)
P−→ Eµ

[
h(G, o)

]
,

for any bounded and continuous function h : G⋆ → R and µ some
probability measure on G⋆.



Branching processes

Who of you have heard of branching processes?



Neighbourhoods CM
▷ Important ingredient in proof is description local neighbourhood
of uniform vertex on ∈ [n]. Its degree has distribution don

d
= Dn.

▷ Assume that don
d−→ D and E[Dn]→ E[D].

▷ Take any of Don neighbours a of on. Law of number of forward
neighbours of a, i.e., Ba = Da − 1, is approximately

P(Ba = k)≈ (k + 1)∑
i∈[n] di

∑
i∈[n]

1{di=k+1} =
(k + 1)

E[Dn]
P(Dn = k + 1)

→ (k + 1)

E[D]
P(D = k + 1).

Equals size-biased version of D minus 1. Denote this by D⋆ − 1.

▷ Forward neighbours of neighbours of on are close to i.i.d. Also
forward neighbours of forward neighbours approximately i.i.d. etc.
▷ Conclusion: Neighbourhood looks like branching process with
offspring distribution D⋆ − 1 (except root has offspring D).



Local convergence CM

Theorem 1. Consider CMn(d) where degrees satisfy

Dn = don
d−→ D, and E[Dn]→ E[D].

Then CMn(d) converges in probability to unimodular branching pro-
cess where root has offspring D, while every other vertex has in-
dependent offspring D⋆ − 1.

Proof. Indicate idea on board.



Erdős-Rényi

What is local limit of the Erdős-Rényi
random graph with p = λ/n?



Local convergence GRG

Theorem 2. Consider GRGn(w) where weights satisfy

Wn = won
d−→ W, and E[Wn]→ E[W ].

Then GRGn(w) converges in probability to unimodular branching
process where root has offspring D ∼ Poi(W ), while every other
vertex has independent offspring Poi(W ⋆), where

P(W ⋆ ≤ w) =
E[W1{W≤w}]

E[W ]
.

▷ Implies result for Erdős-Rényi random graph.



Global clustering
Recall that the (global) clustering coefficient is defined by

CGn =
3× number of triangles

number of connected triplets
.

Proportion of friends that are friends of one another.
Can be rewritten as

CGn =
1
n

∑
v∈[n]∆v

1
n

∑
v∈[n]

(
dv
2

),
where ∆v is number of triangles containing v.

Is global clustering coefficient CGn local?



Global clustering
⋆ Let CGn denote global clustering coefficient. [|V (Gn)| = n.]

Theorem 3. Let (Gn)n≥1 be graph sequence that converges locally
in probability to (G, o) ∼ µ as |V (Gn)| = n→∞. Then

CGn =
1
n

∑
v∈[n]∆v

1
n

∑
v∈[n]

(
dv
2

) P−→
Eµ

[
∆o

]
Eµ

[(
do
2

)],
when Dn = don is such that (D2

n)n≥1 is uniformly integrable.
Proof. We note that

1

n

∑
v∈[n]

(
dv
2

)
= E

[(don
2

)
| Gn

]
,

1

n

∑
v∈[n]

∆v = E
[
∆on | Gn

]
.

Problem: (G, o) 7→
(
do
2

)
and (G, o) 7→ ∆o unbounded functions in G⋆.

However, when (D2
n)n≥1 is uniformly integrable, we can truncate the

sum to bounded values, giving continuous functions. □



Local clustering
Local clustering coefficient is defined by

C̄Gn =
1

n

∑
v∈[n]

∆v(
dv
2

).

Is local clustering coefficient C̄Gn local?



Local clustering
⋆ Let C̄Gn denote local clustering coefficient. [|V (Gn)| = n.]

Theorem 4. Let (Gn)n≥1 be graph sequence that converges locally
in probability to (G, o) ∼ µ as |V (Gn)| = n→∞. Then

C̄Gn =
1

n

∑
v∈[n]

∆v

1
n

∑
v∈[n]

(
dv
2

) P−→ Eµ

[
∆o(
do
2

)].
Proof. We note that

1

n

∑
v∈[n]

(
dv
2

)
= E

[
∆on(
don
2

) | Gn

]
,

where
(G, o) 7→ ∆o(

do
2

)
is bounded continuous function in G⋆. □



Assortativity coefficient
Recall that assortativity coefficient is given by

ρGn =

1
|En|

∑
ij∈En

didj −
(

1
|En|

∑
ij∈En

di

)2

1
|En|

∑
ij∈En

d2i −
(

1
|En|

∑
ij∈En

di

)2 .

Correlation between degrees at either end of edge.

Is assortativity coefficient ρGn local?



Assortativity
⋆ Let ρGn denote assortativity coefficient. [|V (Gn)| = n.]

Theorem 5. Let (Gn)n≥1 be graph sequence that converges locally
in probability to (G, o) ∼ µ as |V (Gn)| = n→∞. Then

ρGn

P−→ Eµ[d
2
odV ]− Eµ[d

2
o]
2/Eµ[do]

Eµ[d3o]− Eµ[d2o]
2/Eµ[do]

,

when Dn = don is such that (D3
n)n≥1 is uniformly integrable, and

where V is a neighbor of o chosen uar.

Proof. Blackboard. □



Number components
⋆ Let Kn denote number of connected components. [|V (Gn)| = n.]

Is Kn/n local?



Number components
⋆ Let Kn denote number of connected components. [|V (Gn)| = n.]

Theorem 6. Let (Gn)n≥1 be graph sequence that converges locally
in probability to (G, o) ∼ µ as |V (Gn)| = n→∞. Then

Kn

n

P−→ Eµ

[
1

|C (o)|

]
.

Proof. We note that

Kn

n
=

1

n

∑
v∈[n]

1

|C (v)|
= E

[
1

|C (on)|
| Gn

]
.

Since
(G, o) 7→ 1

|C (o)|
is bounded continuous functional in G⋆, the claim follows. □



Giant component
⋆ Let Cmax denote connected component of maximal size.
[|V (Gn)| = n.]

Is |Cmax|/n local?



Giant component
⋆ Let Cmax denote connected component of maximal size.

Theorem 7. Let (Gn)n≥1 be graph sequence that converges locally
in probability to (G, o) ∼ µ as |V (Gn)| = n→∞. Then

|Cmax|
n

P−→ µ(|C (o)| =∞)

precisely when

lim
k→∞

lim sup
n→∞

1

n2
E
[
#
{
(x, y) : |C (x)| ≥ k, |C (y)| ≥ k, x←→/ y

}]
= 0.

Proof. Hero proof is number of vertices in clusters of size at least k

Z≥k =
∑
v∈[n]

1{|C (v)|≥k}.



Giant ‘almost local’
Note that

(G, o) 7→ 1{|C (o)|≥k}

is bounded continuous functional in G⋆. Thus,

Z≥k
n

= E
[
1{|C (on)|≥k} | Gn

]
P−→ µ(|C (o)| ≥ k).

⋆ Upper bound: Either |Cmax| < k, or |Cmax| ≤ Z≥k. Thus,

|Cmax|
n
≤ k

n
+

Z≥k
n

P−→ µ(|C (o)| ≥ k)→ µ(|C (o)| =∞).

⋆ Proves upper bound without any assumption other than

local convergence in probability!

□



Giant ‘almost local’
Key equation: (|C(i)|)i≥1 are ordered connected component sizes:(Z≥k

n

)2

=
∑
i≥1

|C(i)|2

n2
1{|C(i)|≥k} +

1

n2

∑
i̸=j

|C(i)||C(j)|1{|C(i)|,|C(j)|≥k}.

⋆ First term rhs is bounded above by

|Cmax|
n

∑
i≥1

|C(i)|
n

1{|C(i)|≥k} =
|Cmax|
n

Z≥k
n

.

⋆ Second term rhs satisfies, by ‘almost local’ condition,

1

n2
#
{
(x, y) : |C (x)| ≥ k, |C (y)| ≥ k, x←→/ y

}
= oP,k(1),

where latter denotes random variable Xn,k s.t.

lim
k→∞

lim sup
n→∞

P(|Xn,k| ≥ ε) = 0.



Giant ‘almost local’
⋆ In terms of this notion, Z≥k/n

P−→ µ(|C (o)| ≥ k) implies

Z≥k
n

= µ(|C (o)| =∞) + oP,k(1).

Thus, from key equation,[
µ(|C (o)| =∞) + oP,k(1)

]2
≤ |Cmax|

n

[
µ(|C (o)| =∞) + oP,k(1)

]
+ oP,k(1),

so that
|Cmax|
n
≥ µ(|C (o)| =∞) + oP,k(1).

⋆ Taking limk→∞ lim supn→∞ proves lower bound on |Cmax|. □



Phase transition CM
Theorem 8 [Molloy-Reed (95), Janson-Luczak (09), Bollobás-Riordan (09), vdH (21).]

Let ν = E[D(D − 1)]/E[D] > 1. Then, largest component CM has
size ζn(1 + oP(1)) with ζ ∈ (0, 1) for ν > 1.

Here ν is expected number forward neighbours of side uniform edge.

▷ Giant is ‘almost local’: ζ has interpretation of

ζ = µ(unimodular branching process root offspring D survives.)

▷ When E[D(D − 1)] =∞, there always is a giant irrespective of
how small E[D] is:

Robustness of the giant.



Erdős-Rényi

How large is the giant of the Erdős-Rényi
random graph with p = λ/n?



Phase transition GRG
Theorem 9 [Bollobás-Janson-Riordan (07), vdH (24).]

Let ν = E[W 2]/E[W ] > 1. Then, largest component GRG has size
ζn(1 + oP(1)) with ζ ∈ (0, 1) for ν > 1.

▷ Implies result for Erdős-Rényi random graph.

Giant is ‘almost local’: ζ is survival probability local limit.

▷ When E[W 2] =∞, there always is a giant irrespective of how
small E[W ] is:

Robustness of the giant.



Part 4:

Small- and ultra-small-world
random graphs



Graph distances CM
Study graph distances between uniform pair of vertices to study

small-world properties.

Theorem 10. [vdH-Hooghiemstra-Van Mieghem 05]

In lightly-inhomogeneous setting, graph distances grow

logarithmically.

Theorem 11. [vdH-Hooghiemstra-Znamenski 07, Norros+Reittu 04]

In highly inhomogeneous setting, graph distances grow

doubly logarithmically.

▷ Technically: lightly-inhomogeneous setting means that

second moment of degrees is finite.



x 7→ log log x grows extremely slowly
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Plot of x 7→ log x and x 7→ log log x.



Graph distances CM
Hn is graph distance between uniform pair of vertices in graph.

Theorem 10. [Theorem II.7.1]. When Dn
d−→ D,E[D2

n]→ E[D2] with
ν = E[D(D − 1)]/E[D] > 1, conditionally on Hn <∞,

Hn

logν n

P−→ 1.

▷ For i.i.d. degrees having at most power-law tails, fluctuations are
bounded and do not converge in distribution.

Theorem 11. [Thm II.7.2]. When Dn
d−→ D, E[D2

n]→ E[D2], and degree
power-law exponent satisfies τ ∈ (2, 3), conditionally on Hn <∞,

Hn

log log n

P−→ 2

| log (τ − 2)|
.

▷ vdH-Komjáthy16: For power-law tails, fluctuations are again
bounded and do not converge in distribution.



Distances PA models
▷ Results CM and GRG are very alike, with CM having more gen-
eral behavior (e.g., connectivity). Sign of wished for universality.

Non-rigorous physics literature predicts that scaling
distances in preferential attachment models similar
to the one in configuration model with equal

power-law exponent degrees.

▷ Signs point in this direction.

▷ PAM tends to be much harder to analyze, due to

time dependence.



Distances PA models
Theorem 12 [Bol-Rio 04]. For m ≥ 2 and τ = 3,

Hn =
log n

log log n
(1 + oP(1)).

Theorem 13 [Dom-vdH-Hoo 10, vdH+Zhu 25]. For m ≥ 2, τ ∈ (3,∞), exists ν > 1,

Hn

log n

P−→ 1

log ν
.

Theorem 14 [Dommers-vdH-Hoo 10, Der-Mon-Mor 12, Car-Gar-vdH17]. For m ≥ 2, τ ∈ (2, 3),

Hn

log log n

P−→ 4

| log (τ − 2)|
.

Universality!



Distances and
neighbourhoods

When distances grow logarithmically, how quickly
do you think sizes of k-neighbourhood from uniform
vertex grow for k large? but not excessively large



Distances and
neighbourhoods

When distances grow doubly logarithmically, how
quickly do you think sizes of k-neighbourhood from
uniform vertex grow for k large? but not excessively large



Neighbourhoods CM
▷ Important ingredient in proof is description local neighbourhood
of uniform vertex on ∈ [n]. Its degree has distribution Don

d
= Dn.

▷ Take any of Don neighbours a of on. Law of number of forward
neighbours of a, i.e., Ba = Da − 1, is approximately

P(Ba = k) ≈ (k + 1)∑
i∈[n] di

∑
i∈[n]

1{di=k+1}
P−→ (k + 1)

E[D]
P(D = k + 1).

Equals size-biased version of D minus 1. Denote this by D⋆ − 1.

▷ Forward neighbours of neighbours of on are close to i.i.d. Also
forward neighbours of forward neighbours approximately i.i.d...

▷ Conclusion: Neighbourhood looks like branching process with
offspring distribution D⋆ − 1 (except root has offspring D.)



Local convergence CM
▷ Formal definition in terms of local convergence.

▷ E[D2] <∞ : Finite-mean BP, which has exponential growth of
generation sizes when ν = E[D⋆ − 1] = E[D(D − 1)]/E[D] > 1 :

ν−kZk
a.s.−→ Y ∈ (0,∞).

Thus, graph distances grow like logν n.

▷ τ ∈ (2, 3) : Infinite-mean BP, which has double exponential
growth of generation sizes:

(τ − 2)k log(Zk ∨ 1)
a.s.−→ Y ∈ (0,∞).

▷ Blackboard: Indicate ingredients proof.



Part 5:

Competition and fake news
on scale-free random graphs



Competition
▷ Viral marketing aims to use social networks so as to accellerate
adoption of novel products.

▷ Observation: Often one product takes almost complete market.
Not always product of best quality:

Why?

▷ Aim: Explain this phenomenon, and relate it to network structure
as well as spreading dynamics.

▷ Setting:
– Model social network as configuration model random graph;
– Model dynamics as competitions spreading through network.
Vertices, once occupied by certain type, try to occupy their
neighbours at (possibly) random and i.i.d. times.
▷ Speed of type might correspond to quality product.



Explosive setting
Theorem 15. [Deijfen-vdH (2013), vdH (2023)] Fix τ ∈ (2, 3). Consider competition
model, where types compete for territory with i.i.d. traversal times
and both types are explosive. Then, each of types wins majority
vertices with positive probability:

N1(n)

n

d−→ I ∈ {0, 1}.

Number of vertices for losing type Nlos(n) converges in distribution:

Nlos(n)
d−→ Nlos ∈ N.

The winner takes it all, the loser’s standing small...

Who wins is determined by location of starting point types:
Location, location, location!



Explosion
⋆ In this setting, turns out that competition spread is explosive:

Both types reach ‘infinitely many vertices’ in bounded time.

How does this explain ‘winner takes it all’
phenomenon?



Fake news
▷ Fake news is huge societal problem, causing major disruptions.

▷ Observation: Fake news often spreads quickly through network.

▷ Aim: Investigate this phenomenon, and filter out dependence on
network structure.

▷ Setting:
– Model social network as configuration model random graph;
– Model fake news dynamics as competing rumour spread
through network. Vertices, after hearing fake or correct news,
convince their neighbours at random and i.i.d. times.

▷ Optimistic perspective:

Once vertices hear correct news, they are
immediately convinced by it.



Fake news model
▷ Assign i.i.d. traversal times ((LFe , L

R
e ))e∈E(G) to edges of graph.

▷ Fake news spreads using traversal times (LFe )e∈E(G).

▷ Correct news spreads from same source after delay d, using
traversal times (LRe )e∈E(G).

▷ Upon hearing correct news, vertices are immediately con-
vinced, and start spreading correct news.

▷ Strong survival: Fake news reaches positive proportion vertices
with positive probability.

▷ Weak survival: Fake news reaches a growing number of vertices
with positive probability.

What are conditions
for fake news survival?



Strong survival
Theorem 16. [vdH-Shneer (2023)] Condition on news originating in giant
component configuration model, and assume that degrees are i.i.d.
with power-law distribution with τ ∈ (2, 3).

Fake news survives strongly when age-dependent branching pro-
cess with offspring distribution D⋆ − 1 and lifetime LF is explosive.

In explosive setting, fake news can reach
positive proportion of vertices, even when on

average it spreads slower.

It is hard to kill fake news!



Neighbourhoods CM
▷ Important ingredient in proof is description local neighbourhood
of uniform vertex on ∈ [n]. Its degree has distribution Don

d
= D.

▷ Take any of Don neighbours a of on. Law of number of forward
neighbours of a, i.e., Ba = Da − 1, is approximately

P(Ba = k) ≈ (k + 1)∑
i∈[n] di

∑
i∈[n]

1{di=k+1}
P−→ (k + 1)

E[D]
P(D = k + 1).

Equals size-biased version of D minus 1. Denote this by D⋆ − 1.

▷ Forward neighbours of neighbours of on are close to i.i.d. Also
forward neighbours of forward neighbours approximately i.i.d...

▷ Conclusion: Neighbourhood looks like branching process with
offspring distribution D⋆ − 1 (except for root, which has offspring
D.)



Local convergence CM
▷ Formal definition in terms of local convergence.

▷ E[D2] <∞ : Finite-mean BP, which has exponential growth of
generation sizes when ν = E[D⋆ − 1] = E[D(D − 1)]/E[D] > 1 :

ν−kZk
a.s.−→ Y ∈ (0,∞).

Thus, graph distances grow like logν n. Same true for rumour
spread models with n replaced by time.

▷ τ ∈ (2, 3) : Infinite-mean BP, which has double exponential
growth of generation sizes:

(τ − 2)k log(Zk ∨ 1)
a.s.−→ Y ∈ (0,∞).

⋆ Rumour spread models tend to be explosive. Type that explodes
first wins.



Choice menu

⋆ Other almost local properties random graphs:

What would you like to know?

⋆ How to prove ‘giant is almost local’ condition?

⋆ Examples of local limits of random graphs:

What is your favourite model?

⋆ Extension to directed random graphs.



Conclusions
▷ Networks useful to interpret real-world phenomena:

centrality measures.

▷ Unexpected commonality networks:
scale free and small worlds.

▷ Random graph models explain properties networks.
Universality?

Example: Local limits often branching processes



Material Networks
▷ Random graphs and complex networks Volumes 1 and 2
http://www.win.tue.nl/∼rhofstad/NotesRGCN.html
Aimed at master and PhD students in math.

▷ Network science by Albert-László Barabási.
Online book available at http://networksciencebook.com
For broad audience, requires critical reading.

▷ Networks: an introduction by Mark E. J. Newman.
For broad audience, gives most definitions of network notions.

▷ The atlas for the aspiring network scientist by Michele Costia.
https://www.networkatlas.eu/

▷ NetworkPages for articles on various applications of networks.
https://www.networkpages.nl

▷ Many other sources and popular books. Explore yourself!


