Community detection on multilayer hypergraphs using the aggregate similarity matrix

Kalle Alaluusua, Konstantin Avrachenkov, **B R Vinay Kumar**, Lasse Leskelä

> AROMATH Seminar May 10, 2023 INRIA, France

Motivating example:

Motivating example

Motivating example

Multilayer hypergraph

Multilayer HSBM

- ▶ *N* Vertices $\{1, \dots, N\} =: [N]$. Two communities $\{-1, +1\}$.
- *M* Layers $\{1, \cdots, M\}$ indexed by *m*
- d vertices in every hyperedge

Multilaver HSBM

- ▶ *N* Vertices $\{1, \dots, N\} =: [N]$. Two communities $\{-1, +1\}$.
- \blacktriangleright M Layers $\{1, \dots, M\}$ indexed by m
- d vertices in every hyperedge
- Step 1: Sample the communities $\sigma \sim \text{Unif}\left(\left\{\sigma \in \{\pm 1\}^N \mid \text{equal number of } +1 \text{ and } -1\right\}\right)$ Step 2: For each layer $m \in \{1, \dots, M\}$ and for each hyperedge $e \subset [N]$ with |e| = d. set $\mathcal{A}_{e}^{(m)} = \begin{cases} 1 & \text{with prob. } p_{e}^{(m)} & (e \text{ is present in layer } m) \\ 0 & \text{with prob. } 1 - p_{e}^{(m)} & (e \text{ is not present in layer } m) \end{cases},$

Hypergraph incidence matrix - $\mathbf{A} = (A_e^{(m)})$

Multilayer HSBM

- ▶ *N* Vertices $\{1, \dots, N\} =: [N]$. Two communities $\{-1, +1\}$.
- *M* Layers $\{1, \dots, M\}$ indexed by *m*
- d vertices in every hyperedge
- Step 1: Sample the communities $\sigma \sim \text{Unif}\left(\left\{\sigma \in \{\pm 1\}^N \mid \text{equal number of } + 1 \text{ and } -1\right\}\right)$ Step 2: For each layer $m \in \{1, \dots, M\}$ and for each hyperedge $e \subset [N]$ with |e| = d, set

 $\mathcal{A}_{e}^{(m)} = \begin{cases} 1 & \text{with prob. } p_{e}^{(m)} & (e \text{ is present in layer } m) \\ 0 & \text{with prob. } 1 - p_{e}^{(m)} & (e \text{ is not present in layer } m) \end{cases},$

Hypergraph incidence matrix - $\mathbf{A} = (A_e^{(m)})$ $(\boldsymbol{\sigma}, \mathbf{A}) \sim \mathsf{HSBM}(N, M, d, (p_e^{(m)}))$ Multilayer HSBM: Specifications

 $(\boldsymbol{\sigma}, \boldsymbol{\mathsf{A}}) \sim \mathsf{HSBM}(N, M, d, (p_e^{(m)}))$

1. Community profile of hyperedge *e* denoted $au \equiv (au(e))$

$$au\left(igcap_{e}^{(m)}
ight) = (3,2), \quad au\left(igcap_{e}^{(m)}
ight) = (2,5), \quad au\left(igcap_{e}^{(m)}
ight) = (3,0)$$

$$p_{e}^{(m)} = p_{ au(e)}^{(m)}$$

For two communities, $\tau(e) \in \{(0, d), (1, d - 1), \dots, (d, 0)\}$. 2. Scaling regime: For an edge with community profile $\tau(e)$,

$$p_{\tau(e)}^{(m)} = \alpha_{\tau(e)}^{(m)} \frac{\log N}{\binom{N-1}{d-1}}$$

3. Symmetricity:

$$\alpha_{(r,d-r)}^{(m)} = \alpha_{(d-r,r)}^{(m)}$$

Homogeneous: $\alpha_{\tau} = \alpha$ if $\tau \in \{(d, 0), (0, d)\}$; else $\alpha_{\tau} = \beta$.

Gaudio, J. and Joshi, N., 2022. Community detection in the hypergraph sbm: Optimal recovery given the similarity matrix. arXiv preprint arXiv:2208.12227.

Multilayer HSBM: Specifications

 $(\boldsymbol{\sigma}, \boldsymbol{\mathsf{A}}) \sim \mathsf{HSBM}(N, M, d, (p_e^{(m)}))$

1. Community profile of hyperedge *e* denoted $au \equiv (au(e))$

$$au\left(igcap_{e}^{(m)}
ight) = (3,2), \quad au\left(igcap_{e}^{(m)}
ight) = (2,5), \quad au\left(igcap_{e}^{(m)}
ight) = (3,0)$$

$$p_{e}^{(m)} = p_{ au(e)}^{(m)}$$

For two communities, $\tau(e) \in \{(0, d), (1, d - 1), \dots, (d, 0)\}$. 2. Scaling regime: For an edge with community profile $\tau(e)$,

$$p_{\tau(e)}^{(m)} = \alpha_{\tau(e)}^{(m)} \frac{\log N}{\binom{N-1}{d-1}}.$$

3. Symmetricity:

$$\alpha_{(r,d-r)}^{(m)} = \alpha_{(d-r,r)}^{(m)}$$
$$(\boldsymbol{\sigma}, \mathbf{A}) \sim \mathsf{HSBM}(N, M, d, (\alpha_{\tau}^{(m)}))$$

Homogeneous: $\alpha_{\tau} = \alpha$ if $\tau \in \{(d, 0), (0, d)\}$; else $\alpha_{\tau} = \beta$.

Gaudio, J. and Joshi, N., 2022. Community detection in the hypergraph sbm: Optimal recovery given the similarity matrix. arXiv preprint arXiv:2208.12227.

 $\alpha_{(\bullet \bullet \bullet \bullet)}$ $\alpha_{(\bullet \bullet \bullet \bullet)}$ $\alpha_{(\bullet \bullet \bullet \bullet)}$

Assortative:

 $\alpha_{(\bullet\bullet\bullet\bullet)} > \alpha_{(\bullet\bullet\bullet\bullet)} > \alpha_{(\bullet\bullet\bullet\bullet)}$

Assortative:

Assortative:

Disassortative:

 $\alpha_{(\bullet\bullet\bullet\bullet)} < \alpha_{(\bullet\bullet\bullet\bullet)} < \alpha_{(\bullet\bullet\bullet\bullet)}$

Assortative:

Disassortative:

 $\alpha_{(\bullet\bullet\bullet\bullet)} < \alpha_{(\bullet\bullet\bullet\bullet)} < \alpha_{(\bullet\bullet\bullet\bullet)}$

Each layer could be either assortative or disassortative.
 Define assortativity

$$\xi := \sum_{m=1}^{M} \sum_{r=0}^{d-1} {d-1 \choose r} (d-1-2r) \alpha_{(r,d-r)}^{(m)}.$$

• Assortative: $\xi > 0$ and Disassortative: $\xi < 0$.

For
$$d = 5$$
, $\xi = 4\alpha_{(0,5)} + 4\alpha_{(1,4)} - 8\alpha_{(2,3)}$.

Motivation

Motivation

Motivation

Recover communities while maintaining privacy.

Similarity matrix

Similarity matrix

Α

в

C D

Е

F

G

н

J

K L

Α	в	с	D	Е	F	G	н	Т	J	к	L
0	1	2	1	0	1	0	1	0	1	1	1
	0	1	1	0	0	0	0	0	0	0	0
		0	1	0	1	0	1	0	0	0	0
			0	0	0	0	0	0	0	0	0
				0	0	1	0	1	0	0	1
					0	0	1	0	0	0	0
						0	0	1	0	0	1
							0	0	0	0	0
								0	0	0	1
									0	0	0
										0	0
											0

Problem formulation

Data:
$$(\boldsymbol{\sigma}, \mathbf{A}) \sim \mathsf{HSBM}(N, M, d, (\alpha_{\tau}^{(m)}))$$

Given: $N \times N$ aggregate similarity matrix $\mathbf{W} = (\mathbf{W}_{ij})$, such that

$$\mathbf{W}_{ij} = \sum_{m=1}^{M} W_{ij}^{(m)},$$

where

$$W_{ij}^{(m)} = \#$$
 of hyperedges that contain both *i* and *j* in layer *m*
= $\sum_{e:e \ni i,j} A_e^{(m)}$

Problem formulation

Data:
$$(\boldsymbol{\sigma}, \boldsymbol{\mathsf{A}}) \sim \mathsf{HSBM}(N, M, d, (\alpha_{\tau}^{(m)}))$$

Given: $N \times N$ aggregate similarity matrix $\mathbf{W} = (\mathbf{W}_{ij})$, such that

$$\mathbf{W}_{ij} = \sum_{m=1}^{M} W_{ij}^{(m)},$$

where

 $W_{ij}^{(m)} = \#$ of hyperedges that contain both *i* and *j* in layer *m* = $\sum_{e:e \ni i,j} A_e^{(m)}$

Want to find an estimate $\hat{\sigma}^{(N)}$ of σ ($\equiv \sigma^{(N)}$) that exactly recovers the communities,

$$\lim_{N\to\infty} \mathbb{P}\left(\hat{\boldsymbol{\sigma}}^{(N)} \in \{\pm \boldsymbol{\sigma}^{(N)}\}\right) = 1.$$

A first approach

In the assortative case:

Solve the min-bisection problem:

$$\max \sum_{i,j} W_{ij} x_i x_j \quad \text{subject to } \mathbf{x} \in \{\pm 1\}^N, \mathbf{1}^T \mathbf{x} = 0.$$
(1)

¹Kim, C., Bandeira, A.S. and Goemans, M.X., 2018. Stochastic block model for hypergraphs: Statistical limits and a semidefinite programming approach. arXiv preprint arXiv:1807.02884.

A first approach

In the assortative case:

Solve the min-bisection problem:

$$\max \sum_{i,j} W_{ij} x_i x_j \quad \text{subject to } \mathbf{x} \in \{\pm 1\}^N, \mathbf{1}^T \mathbf{x} = 0.$$
(1)

► SDP relaxation¹:

maximize
$$\sum_{1 \le i < j \le N} W_{ij} X_{ij}$$
subject to
$$\sum_{1 \le i < j \le N} X_{ij} = 0,$$
$$X_{ii} = 1 \text{ for all } i \in [N]$$
$$X \succeq 0.$$
$$(2)$$

• Any solution **x** of (1) is a solution of (2) by taking $\mathbf{X} = \mathbf{x}\mathbf{x}^{T}$.

¹Kim, C., Bandeira, A.S. and Goemans, M.X., 2018. Stochastic block model for hypergraphs: Statistical limits and a semidefinite programming approach. arXiv preprint arXiv:1807.02884.

Algorithm and main result

 $\begin{array}{l} \mbox{Step 1} \\ \mbox{Given } s \in \{\pm 1\} \mbox{ and } {\bf W}, \mbox{ solve:} \end{array}$

Step 2

The optimal solution $\mathbf{X}^* = \sum_{i=1}^N \lambda_i \mathbf{v}_i \mathbf{v}_i^{\mathsf{T}}$ with $\lambda_1 \geq \cdots \geq \lambda_N$.

 $\frac{\mathsf{Step 3}}{\mathsf{Output }} \hat{\boldsymbol{\sigma}} = \mathsf{sgn}(\boldsymbol{v}_1)$

Algorithm and main result

Step 1 Given $s \in \{\pm 1\}$ and **W**, solve:

maximize
$$\sum_{1 \le i < j \le N} sW_{ij}X_{ij}$$

subject to $\sum_{1 \le i < j \le N} X_{ij} = 0$,
 $X_{ii} = 1$ for all $i \in [N]$
 $X \succeq 0$.

Step 2

The optimal solution $\mathbf{X}^* = \sum_{i=1}^N \lambda_i \mathbf{v}_i \mathbf{v}_i^{\mathsf{T}}$ with $\lambda_1 \geq \cdots \geq \lambda_N$.

 $\begin{array}{l} \mathsf{Step 3} \\ \mathsf{Output} \ \hat{\boldsymbol{\sigma}} = \mathsf{sgn}(\boldsymbol{\nu}_1) \end{array}$

Theorem

Suppose $(\sigma, \mathbf{A}) \sim \text{HSBM}(N, M, d, (\alpha_{\tau}^{(m)}))$, and let \mathbf{W} be the aggregate similarity matrix of \mathbf{A} . When l > 1, the above algorithm with \mathbf{W} and $s = \text{sgn}(\xi)$ as inputs, exactly recovers σ .

$$I = \sup_{\lambda \in \mathbb{R}} \sum_{m=1}^{M} \sum_{r=0}^{d-1} 2^{-(d-1)} \binom{d-1}{r} \alpha_{(r,d-r)}^{(m)} \left(1 - e^{-\lambda(d-1-2r)}\right)$$

Dual formulation

Primal problem:

$$\begin{array}{ll} \max & \sum_{1 \leq i < j \leq N} W_{ij} X_{ij} & \min & \langle \mathbf{W}', \mathbf{X} \rangle \\ \text{subject to} & X_{ii} = 1, \ \forall i \in [N] & \equiv & \text{subject to} & \langle \mathbf{A}_i, \mathbf{X} \rangle = 1, \ \forall i \in [N] \\ & \langle \mathbf{X}, \mathbf{11}^T \rangle = 0, & \langle \mathbf{X}, \mathbf{J} \rangle = 0, \\ & \mathbf{X} \succeq 0. & -\mathbf{X} \preceq 0. \end{array}$$

where

$$(\mathbf{A}_i)_{jk} = 0 \text{ for } j \neq k, \text{ and } (\mathbf{A}_i)_{jj} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

Lagrangian:

$$\mathcal{L}(\mathbf{X}, \mathbf{S}, \nu, d) = \langle \mathbf{W}', \mathbf{X} \rangle - \langle \mathbf{S}, \mathbf{X} \rangle + \nu \langle \mathbf{X}, \mathbf{J} \rangle + \sum_{i=1}^{N} d_i \left(\langle \mathbf{A}_i, \mathbf{X} \rangle - 1 \right).$$

where $\mathbf{S} \succeq \mathbf{0}$.

Dual formulation

Dual objective:

$$g(\mathbf{S}, \nu, \boldsymbol{d}) = \inf_{\mathbf{X}} \mathcal{L}(\mathbf{X}, \mathbf{S}, \nu, \boldsymbol{d})$$

= $\inf_{\mathbf{X}} \langle \mathbf{W}' - \mathbf{S} + \nu \mathbf{J} + \operatorname{diag} (\boldsymbol{d}), \mathbf{X} \rangle - \sum_{i=1}^{N} d_i$
= $\inf_{\mathbf{X}} \langle \mathbf{W}' - \mathbf{S} + \nu \mathbf{J} + \mathbf{D}, \mathbf{X} \rangle - \operatorname{trace} (\mathbf{D})$
= $\begin{cases} -\operatorname{trace} (\mathbf{D}) & \text{if } \mathbf{W}' - \mathbf{S} + \nu \mathbf{J} + \mathbf{D} = 0 \\ -\infty & \text{o.w.} \end{cases}$

Dual problem:

Dual certificate

W: Observed aggregate similarity matrix

Lemma

Suppose there is a $N \times N$ diagonal matrix **D** such that $S := D + \mathbf{11}^T - W$ satisfies:

 $\mathbf{S} \succeq 0, \quad \lambda_{N-1}(\mathbf{S}) > 0, \quad \text{ and } \quad \mathbf{S}\boldsymbol{\sigma} = 0,$

then $\mathbf{X}^* = \boldsymbol{\sigma} \boldsymbol{\sigma}^T$ is the unique optimal solution to the SDP.

Dual certificate

W: Observed aggregate similarity matrix

Lemma

Suppose there is a $N \times N$ diagonal matrix **D** such that $S := D + \mathbf{11}^T - W$ satisfies:

 $\mathbf{S} \succeq 0, \quad \lambda_{N-1}(\mathbf{S}) > 0, \quad \text{ and } \quad \mathbf{S}\boldsymbol{\sigma} = 0,$

then $\mathbf{X}^* = \boldsymbol{\sigma} \boldsymbol{\sigma}^{\mathsf{T}}$ is the unique optimal solution to the SDP.

Weak duality: **Optimality** Let X be primal feasible and $X^* = \sigma \sigma^T$. Then $\langle \mathbf{W}, \mathbf{X} \rangle \leq \text{ trace } (\mathbf{D})$ $= \langle \mathbf{D}, \mathbf{X} \rangle = \langle \mathbf{D}, \mathbf{X}^* \rangle \qquad (\text{since } X_{ii} = X_{ii}^* = 1)$ $= \langle \mathbf{W} + \mathbf{S} - \nu \mathbf{J}, \mathbf{X}^* \rangle = \langle \mathbf{W}, \mathbf{X}^* \rangle \text{ (since } \langle \mathbf{S}, \mathbf{X}^* \rangle = \sigma^T (S\sigma) = 0)$

Dual certificate

W: Observed aggregate similarity matrix

Lemma

Suppose there is a $N \times N$ diagonal matrix **D** such that $S := D + \mathbf{11}^T - W$ satisfies:

$$\mathbf{S} \succeq 0, \quad \lambda_{N-1}(\mathbf{S}) > 0, \quad \text{ and } \quad \mathbf{S}\boldsymbol{\sigma} = 0,$$

then $\mathbf{X}^* = \boldsymbol{\sigma} \boldsymbol{\sigma}^{\mathsf{T}}$ is the unique optimal solution to the SDP.

Strong duality: Uniqueness Let \tilde{X} be an optimal solution and $X^* = \sigma \sigma^T$. Then $\langle \mathbf{S}, \tilde{\mathbf{X}} \rangle = \langle \mathbf{D} + \mathbf{J} - \mathbf{W}, \tilde{\mathbf{X}} \rangle = \langle \mathbf{D} - \mathbf{W}, \tilde{\mathbf{X}} \rangle$ $= \langle \mathbf{D} - \mathbf{W}, \mathbf{X}^* \rangle$ ($\langle \mathbf{W}, \tilde{\mathbf{X}} \rangle = \langle \mathbf{W}, \mathbf{X}^* \rangle$ and $\tilde{X}_{ii} = X_{ii}^* = 1$) $= \langle \mathbf{S}, \mathbf{X}^* \rangle = 0$ (since $\langle \mathbf{S}, \mathbf{X}^* \rangle = \sigma^T (S\sigma) = 0$)

Since $\mathbf{S} \succeq 0$ and $\lambda_{N-1} > 0$, the Null(\mathbf{S}) is spanned by $\boldsymbol{\sigma}$ only. $\tilde{\mathbf{X}} \succeq 0$ now implies that it should be a multiple of $\boldsymbol{\sigma} \boldsymbol{\sigma}^{T}$ as well.

Proof: Dual certificate

W: Observed aggregate similarity matrix

Lemma

Suppose there is a $N \times N$ diagonal matrix **D** such that $S := D + 11^T - W$ satisfies:

 $\mathbf{S} \succeq 0, \quad \lambda_{N-1}(\mathbf{S}) > 0, \quad \text{ and } \quad \mathbf{S}\boldsymbol{\sigma} = 0,$

then $\mathbf{X}^* = \boldsymbol{\sigma} \boldsymbol{\sigma}^T$ is the unique optimal solution to the SDP.

Proof: Dual certificate

W: Observed aggregate similarity matrix

Lemma

Suppose there is a $N \times N$ diagonal matrix **D** such that $S := D + 11^T - W$ satisfies:

 $\mathbf{S} \succeq 0, \quad \lambda_{N-1}(\mathbf{S}) > 0, \quad \text{ and } \quad \mathbf{S}\boldsymbol{\sigma} = 0,$

then $\mathbf{X}^* = \boldsymbol{\sigma} \boldsymbol{\sigma}^T$ is the unique optimal solution to the SDP.

Taking

$$D_{ii} := \sum_{j} W_{ij} \sigma_i \sigma_j,$$

easy to verify $\mathbf{S}\boldsymbol{\sigma}=0.$ Suffices to show

$$\mathbb{P}\left(\inf_{\mathbf{x}\perp\sigma:\|\mathbf{x}\|_{2}=1}\mathbf{x}^{\mathsf{T}}\mathbf{S}\mathbf{x}>0
ight)=1-o(1).$$

Proof: Bounds

Lemma

Let $\mathbb{E} \boldsymbol{W}$ is the expected aggregate similarity matrix. Then

$$\mathbf{x}^T \mathbf{S} \mathbf{x} \geq \min_i D_{ii} - \|\mathbf{W} - \mathbb{E} \mathbf{W}\|_2$$

Proof: Bounds

Lemma

Let $\mathbb{E}\mathbf{W}$ is the expected aggregate similarity matrix. Then

$$\mathbf{x}^T \mathbf{S} \mathbf{x} \geq \min_{i} D_{ii} - \|\mathbf{W} - \mathbb{E} \mathbf{W}\|_2$$

Proposition

Let I > 1. Then there exists a constant $\epsilon > 0$ dependent on model parameters such that for all $i \in [N]$,

$$\mathbb{P}(D_{ii} > \epsilon \log N) \geq 1 - o(N^{-1}).$$

Proposition

There exists a constant C such that

$$\mathbb{P}\left(\|\mathbf{W} - \mathbb{E}\mathbf{W}\|_2 \leq \mathcal{C}M\sqrt{\log N}
ight) \geq 1 - \mathcal{O}(N^{-11})$$

Proof: Main ingredients

Rank-2 decomposition:

$$\mathbb{E}\mathbf{W} = \left(\frac{w_{\text{in}} + w_{\text{out}}}{2}\right)\mathbf{1}\mathbf{1}^{T} + \left(\frac{w_{\text{in}} - w_{\text{out}}}{2}\right)\boldsymbol{\sigma}\boldsymbol{\sigma}^{T} - w_{\text{in}}\mathbf{I}_{N},$$

where $w_{in} = \mathbb{E}[W_{ij} | \sigma_i = \sigma_j]$ and $w_{out} = \mathbb{E}[W_{ij} | \sigma_i \neq \sigma_j]$.

Assortativity:

$$w_{\mathrm{in}} - w_{\mathrm{out}} \approx \frac{\log N}{2^{d-2}N} \xi.$$

Summary

- Multilayer HSBM (σ , A) ~ HSBM(N, M, d, ($\alpha_{\tau}^{(m)}$))
- Inhomogeneous hyperedge probabilities
- Assortative and disassortative cases
- \blacktriangleright Exact recovery using the similarity matrix ${\bf W}$

SDP algorithm recovers the clusters exactly when l > 1.

Summary

- ► Multilayer HSBM (σ , A) ~ HSBM(N, M, d, $(\alpha_{\tau}^{(m)})$)
- Inhomogeneous hyperedge probabilities
- Assortative and disassortative cases
- Exact recovery using the similarity matrix W

SDP algorithm recovers the clusters exactly when l > 1.

Future work

- ► Asymmetric: $\alpha_{(\bullet \bullet \bullet \bullet)} \neq \alpha_{(\bullet \bullet \bullet \bullet)}$
- Necessary conditions for exact recovery from W
- For different hyperedge sizes d
- ► *M*, *d* depending on *N*

Thank you !!