
Community detection on multilayer hypergraphs
using the aggregate similarity matrix

Kalle Alaluusua, Konstantin Avrachenkov, B R Vinay Kumar,
Lasse Leskelä

AROMATH Seminar
May 10, 2023
INRIA, France

1 / 22



Motivating example:

2 / 22



Motivating example

3 / 22



Motivating example

Multilayer hypergraph
4 / 22



Multilayer HSBM

I N Vertices - {1, · · · ,N} =: [N]. Two communities {−1,+1}.
I M Layers - {1, · · · ,M} indexed by m
I d vertices in every hyperedge

Step 1: Sample the communities
σ ∼ Unif

({
σ ∈ {±1}N

∣∣∣ equal number of + 1 and − 1
})

Step 2: For each layer m ∈ {1, · · · ,M} and for each hyperedge
e ⊂ [N] with |e| = d , set

A(m)
e =

1 with prob. p(m)
e (e is present in layer m)

0 with prob. 1− p(m)
e (e is not present in layer m)

,

Hypergraph incidence matrix - A = (A(m)
e )

(σ,A) ∼ HSBM(N,M, d , (p(m)
e ))

5 / 22



Multilayer HSBM

I N Vertices - {1, · · · ,N} =: [N]. Two communities {−1,+1}.
I M Layers - {1, · · · ,M} indexed by m
I d vertices in every hyperedge

Step 1: Sample the communities
σ ∼ Unif

({
σ ∈ {±1}N

∣∣∣ equal number of + 1 and − 1
})

Step 2: For each layer m ∈ {1, · · · ,M} and for each hyperedge
e ⊂ [N] with |e| = d , set

A(m)
e =

1 with prob. p(m)
e (e is present in layer m)

0 with prob. 1− p(m)
e (e is not present in layer m)

,

Hypergraph incidence matrix - A = (A(m)
e )

(σ,A) ∼ HSBM(N,M, d , (p(m)
e ))

5 / 22



Multilayer HSBM

I N Vertices - {1, · · · ,N} =: [N]. Two communities {−1,+1}.
I M Layers - {1, · · · ,M} indexed by m
I d vertices in every hyperedge

Step 1: Sample the communities
σ ∼ Unif

({
σ ∈ {±1}N

∣∣∣ equal number of + 1 and − 1
})

Step 2: For each layer m ∈ {1, · · · ,M} and for each hyperedge
e ⊂ [N] with |e| = d , set

A(m)
e =

1 with prob. p(m)
e (e is present in layer m)

0 with prob. 1− p(m)
e (e is not present in layer m)

,

Hypergraph incidence matrix - A = (A(m)
e )

(σ,A) ∼ HSBM(N,M, d , (p(m)
e ))

5 / 22



Multilayer HSBM: Specifications
(σ,A) ∼ HSBM(N,M, d , (p(m)

e ))
1. Community profile of hyperedge e denoted τ ≡ (τ (e))

τ

( )
= (3, 2), τ

  = (2, 5), τ
( )

= (3, 0)

p(m)
e = p(m)

τ (e)

For two communities, τ (e) ∈ {(0, d), (1, d − 1), · · · , (d , 0)}.
2. Scaling regime: For an edge with community profile τ (e),

p(m)
τ (e) = α

(m)
τ (e)

logN(N−1
d−1

) .
3. Symmetricity:

α
(m)
(r ,d−r) = α

(m)
(d−r ,r)

(σ,A) ∼ HSBM(N,M, d , (α(m)
τ ))

Homogeneous: ατ = α if τ ∈ {(d, 0), (0, d)}; else ατ = β.
Gaudio, J. and Joshi, N., 2022. Community detection in the hypergraph sbm: Optimal recovery given the similarity
matrix. arXiv preprint arXiv:2208.12227.
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Assortativity

Assortative:

α( )

>

α( )

>

α( )

q q q
α( )

>

α( )

>

α( )

Disassortative:
α( ) < α( ) < α( )

I Each layer could be either assortative or disassortative.
I Define assortativity

ξ :=
M∑

m=1

d−1∑
r=0

(
d − 1
r

)
(d − 1− 2r)α(m)

(r ,d−r).

I Assortative: ξ > 0 and Disassortative: ξ < 0.
I For d = 5, ξ = 4α(0,5) + 4α(1,4) − 8α(2,3).
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Motivation

Recover communities while maintaining privacy.
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Problem formulation
Data: (σ,A) ∼ HSBM(N,M, d , (α(m)

τ ))

Given: N × N aggregate similarity matrix W = (Wij), such that

Wij =
M∑

m=1
W (m)

ij ,

where

W (m)
ij = # of hyperedges that contain both i and j in layer m

=
∑

e:e3i ,j
A(m)

e

Want to find an estimate σ̂(N) of σ (≡ σ(N)) that exactly recovers
the communities,

lim
N→∞

P
(
σ̂(N) ∈ {±σ(N)}

)
= 1.
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A first approach
In the assortative case:
I Solve the min-bisection problem:

max
∑
i ,j

Wijxixj subject to x ∈ {±1}N , 1T x = 0. (1)

I SDP relaxation1:

maximize
∑

1≤i<j≤N
WijXij

subject to
∑

1≤i<j≤N
Xij = 0,

Xii = 1 for all i ∈ [N]
X � 0.

(2)

I Any solution x of (1) is a solution of (2) by taking X = xxT .

1Kim, C., Bandeira, A.S. and Goemans, M.X., 2018. Stochastic block model for hypergraphs: Statistical
limits and a semidefinite programming approach. arXiv preprint arXiv:1807.02884.
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Algorithm and main result
Step 1
Given s ∈ {±1} and W, solve:

maximize
∑

1≤i<j≤N
sWijXij

subject to
∑

1≤i<j≤N
Xij = 0,

Xii = 1 for all i ∈ [N]
X � 0.

Step 2
The optimal solution
X∗ =

∑N
i=1 λivi vT

i with
λ1 ≥ · · · ≥ λN .

Step 3
Output σ̂ = sgn(v1)

Theorem

Suppose (σ,A) ∼ HSBM(N,M, d , (α(m)
τ )), and let W be the

aggregate similarity matrix of A. When I > 1, the above algorithm
with W and s = sgn(ξ) as inputs, exactly recovers σ.

I = sup
λ∈R

M∑
m=1

d−1∑
r=0

2−(d−1)
(
d − 1
r

)
α

(m)
(r ,d−r)

(
1− e−λ(d−1−2r)

)

13 / 22



Algorithm and main result
Step 1
Given s ∈ {±1} and W, solve:

maximize
∑

1≤i<j≤N
sWijXij

subject to
∑

1≤i<j≤N
Xij = 0,

Xii = 1 for all i ∈ [N]
X � 0.

Step 2
The optimal solution
X∗ =

∑N
i=1 λivi vT

i with
λ1 ≥ · · · ≥ λN .

Step 3
Output σ̂ = sgn(v1)

Theorem

Suppose (σ,A) ∼ HSBM(N,M, d , (α(m)
τ )), and let W be the

aggregate similarity matrix of A. When I > 1, the above algorithm
with W and s = sgn(ξ) as inputs, exactly recovers σ.

I = sup
λ∈R

M∑
m=1

d−1∑
r=0

2−(d−1)
(
d − 1
r

)
α

(m)
(r ,d−r)

(
1− e−λ(d−1−2r)

)
13 / 22



Dual formulation

Primal problem:

max
∑

1≤i<j≤N
WijXij

subject to Xii = 1, ∀i ∈ [N]
〈X, 11T 〉 = 0,
X � 0.

≡

min
〈
W′,X

〉
subject to 〈Ai ,X〉 = 1, ∀i ∈ [N]

〈X, J〉 = 0,
− X � 0.

where

(Ai)jk = 0 for j 6= k, and (Ai)jj =
{
1 i = j
0 i 6= j

Lagrangian:

L(X,S, ν,d) = 〈W′,X〉 − 〈S,X〉+ ν〈X, J〉+
N∑

i=1
di (〈Ai ,X〉 − 1) .

where S � 0.
14 / 22



Dual formulation

Dual objective:

g(S, ν,d) = inf
X
L(X,S, ν,d)

= inf
X
〈W′ − S + νJ + diag (d),X〉 −

N∑
i=1

di

= inf
X
〈W′ − S + νJ + D,X〉 − trace (D)

=
{
− trace (D) if W′ − S + νJ + D = 0
−∞ o.w.

Dual problem:

max − trace (D)
subject to W′ − S + νJ + D = 0,

S � 0

≡ min trace (D)
subject to D + νJ−W � 0.

15 / 22



Dual certificate
W: Observed aggregate similarity matrix

Lemma

Suppose there is a N × N diagonal matrix D such that
S := D + 11T −W satisfies:

S � 0, λN−1(S) > 0, and Sσ = 0,

then X∗ = σσT is the unique optimal solution to the SDP.

Weak duality: Optimality
Let X be primal feasible and X ∗ = σσT . Then

〈W,X〉 ≤ trace (D)
= 〈D,X〉 = 〈D,X∗〉 (since Xii = X ∗ii = 1)
= 〈W + S− νJ,X∗〉 = 〈W,X∗〉 (since 〈S,X∗〉 = σT (Sσ) = 0)
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Suppose there is a N × N diagonal matrix D such that
S := D + 11T −W satisfies:

S � 0, λN−1(S) > 0, and Sσ = 0,

then X∗ = σσT is the unique optimal solution to the SDP.

Strong duality: Uniqueness
Let X̃ be an optimal solution and X ∗ = σσT . Then
〈S, X̃〉 = 〈D + J−W, X̃〉 = 〈D−W, X̃〉

= 〈D−W,X∗〉 (〈W, X̃〉 = 〈W,X∗〉 and X̃ii = X ∗ii = 1)
= 〈S,X∗〉 = 0 (since 〈S,X∗〉 = σT (Sσ) = 0)

Since S � 0 and λN−1 > 0, the Null(S) is spanned by σ only.
X̃ � 0 now implies that it should be a multiple of σσT as well.
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Proof: Dual certificate
W: Observed aggregate similarity matrix

Lemma

Suppose there is a N × N diagonal matrix D such that
S := D + 11T −W satisfies:

S � 0, λN−1(S) > 0, and Sσ = 0,

then X∗ = σσT is the unique optimal solution to the SDP.

Taking
Dii :=

∑
j
Wijσiσj ,

easy to verify Sσ = 0. Suffices to show

P
(

inf
x⊥σ:‖x‖2=1

xT Sx > 0
)

= 1− o(1).
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Proof: Bounds

Lemma
Let EW is the expected aggregate similarity matrix. Then

xT Sx ≥ min
i

Dii − ‖W− EW‖2.

Proposition

Let I > 1. Then there exists a constant ε > 0 dependent on model
parameters such that for all i ∈ [N],

P(Dii > ε logN) ≥ 1− o(N−1).

Proposition
There exists a constant C such that

P
(
‖W− EW‖2 ≤ CM

√
logN

)
≥ 1− O(N−11).
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Proof: Main ingredients

I Rank-2 decomposition:

EW =
(win + wout

2

)
11T +

(win − wout
2

)
σσT − winIN ,

where win = E[Wij |σi = σj ] and wout = E[Wij |σi 6= σj ].

I Assortativity:
win − wout ≈

logN
2d−2N ξ.
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Summary

I Multilayer HSBM (σ,A) ∼ HSBM(N,M, d , (α(m)
τ ))

I Inhomogeneous hyperedge probabilities

I Assortative and disassortative cases

I Exact recovery using the similarity matrix W

SDP algorithm recovers the clusters exactly when I > 1.

Future work
I Asymmetric: α( ) 6= α( )

I Necessary conditions for exact recovery from W

I For different hyperedge sizes d

I M, d depending on N
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Thank you !!
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