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Multilayer HSBM

» N Vertices - {1,--- , N} =: [N]. Two communities {—1,+1}.
» M Layers - {1,---, M} indexed by m

P d vertices in every hyperedge



Multilayer HSBM

» N Vertices - {1,--- , N} =: [N]. Two communities {—1,+1}.
» M Layers - {1,---, M} indexed by m
P d vertices in every hyperedge

Step 1: Sample the communities
o ~ Unif ({a e {1}V ‘ equal number of +1 and — 1})

Step 2: For each layer m € {1,--- , M} and for each hyperedge
e C [N] with |e| = d, set

Al = 1 with prob. pé’") (e is present in layer m) ’
0 with prob. 1 — pgm) (e is not present in layer m)

Hypergraph incidence matrix - A = (A(em))
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Step 1:

Step 2:

N Vertices - {1,--- N} =: [N]. Two communities {—1,+1}.
M Layers - {1,--- , M} indexed by m

d vertices in every hyperedge

Sample the communities

o ~ Unif ({a e {1}V ‘ equal number of +1 and — 1})

For each layer m € {1,--- , M} and for each hyperedge
e C [N] with |e| = d, set

Alm) —

e

1 with prob. pgm) (e is present in layer m)
0 with prob. 1 — pgm) (e is not present in layer m)’

Hypergraph incidence matrix - A = (A(em))
(o, A) ~ HSBM(N, M, d, (p{™))



Multilayer HSBM: Specifications
(o, A) ~ HSBM(N, M, d, (p{™))
1. Community profile of hyperedge e denoted T = (7(e))

<§>z> (3,2), 7-( 'x')=(2,5)7 7 (S8) = 3.0)

m) _ ,(m)
Pg ) = Pz(e)

For two communities, 7(e) € {(0,d),(1,d —1),---,(d,0)}.
2. Scaling regime: For an edge with community profile 7(e),
pm _ (m) log N

e}
Pr(e) = Yr(e) (/C\fl_il)

3. Symmetricity:

a(r,dfr) - Oé(dfr,r)

Homogeneous: ar = a if 7 € {(d,0), (0, d)}; else o = B.
Gaudio, J. and Joshi, N., 2022. Community detection in the hypergraph sbm: Optimal recovery given the similarity
matrix. arXiv preprint arXiv:2208.12227.
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Assortativity

Assortative:

Q(ee00e) ~ ((eeeees) -~ (leeoee)

O(eeeee) ~ ((eeeee) ~ (leeeee)

Disassortative:

Q(eee0e) < ((eseees) < (leeoee)

» Each layer could be either assortative or disassortative.
» Define assortativity

M d-1 (m)
ZZ( )(d—1—2r)a (r—r):

m=1 r=0

> Assortative: £ > 0 and Disassortative: £ < 0.
> Ford=5, ¢= 40&(075) + 40&(174) — 80&(273).
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Recover communities while maintaining privacy.



Similarity matrix
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Problem formulation

Data: (o, A) ~ HSBM(N, M, d, (a{™))

Given: N x N aggregate similarity matrix W = (W};), such that

u (m)
W= W™,
m=1

where

W,-J(.m) = # of hyperedges that contain both i and j in layer m

= Z Alm)

e:edi,j



Problem formulation

Data: (o, A) ~ HSBM(N, M, d, (a{™))

Given: N x N aggregate similarity matrix W = (W};), such that

¢ (m)
Wi = > W,
m=1

where

W,-J(.m) = # of hyperedges that contain both i and j in layer m

= Z Alm)

e:edi,j

Want to find an estimate (V) of o (= o(V)) that exactly recovers
the communities,

lim P(&(N) € {ia(N)}> ~1.

N— oo



A first approach

In the assortative case:

» Solve the min-bisection problem:

maxz Wjxix;  subject to x € {11V 17x=0. (1)
i

lKim, C., Bandeira, A.S. and Goemans, M.X., 2018. Stochastic block model for hypergraphs: Statistical
limits and a semidefinite programming approach. arXiv preprint arXiv:1807.02884.



A first approach

In the assortative case:

» Solve the min-bisection problem:

maxz Wjxix;  subject to x € {+1}" 17x = 0.

ij
» SDP relaxation!:

maximize Z Wi Xi

1<i<j<N

subject to Z Xij =0,
1<i<j<N
Xi=1 for all i € [N]
X > 0.

» Any solution x of (1) is a solution of (2) by taking X = xx .

lKim, C., Bandeira, A.S. and Goemans, M.X., 2018. Stochastic block model for hypergraphs: Statistical

limits and a semidefinite programming approach. arXiv preprint arXiv:1807.02884.



Algorithm and main result

Step 1
Given s € {1} and W, solve:

maximize Z sWi; Xi;
1<i<j<N

subject to Z Xij =0,
1<i<j<N

Xji =1 for all i € [N]
X>0.

Step 2

The optimal solution
X* =N Aviv with
A1 > 2 Ay

Step 3
Output 6 = sgn(vy)



Algorithm and main result

Step 1 Step 2
Given s € {£1} and W, solve: The optimal solution
X* =N Aviv with
maximize Z sWi; Xi; A1 > > AL
1<i<j<N
subjectto > X =0, Step 3
1<i<j<N Output & = sgn(v1)
Xji =1 for all i € [N]
X = 0.

Suppose (o, A) ~ HSBM(N, M, d, (a{™)), and let W be the
aggregate similarity matrix of A. When | > 1, the above algorithm
with W and s = sgn(§) as inputs, exactly recovers o.

| ! d_12—(d—1) d—1\ (m) (1_ —A(d—l—zr))
P> ;o )owan (1-e



Dual formulation

Primal problem:

max Wi X;i .
ISESN ] min (W', X)
subject to X; =1, Vie [N] = subject to (A;,X) =1, Vi & [N]
X 11T>:O (X,J) =0,
X > 0 | - X=0
where a
) 1 i=j
(A)j = 0 for j # k, and (A;); = =/
0 i#J
Lagrangian:
N

L(X,S,v,d) = (W' X)—(S,X) +v(X,J) + Z di ((A;, X) —1).
i=1

where S = 0.



Dual formulation

Dual objective:

g(S,v,d) = ir)1(f L(X,S,v,d)

N
= inf (W' =S +vJ+ diag (d),X) - > _dj

-1
= ir)w(f (W —S +vJ+D,X) — trace (D)

—0o0 O.W.

_{—trace (D) ifW —-S+vJ+D=0

Dual problem:

max — trace (D)
subject to W —S+vJ+D =0,
S>-0

= min trace (D)
subject to D+ vJ —W > 0.



Dual certificate

W: Observed aggregate similarity matrix

Lemma

Suppose there is a N x N diagonal matrix D such that
S:=D+ 117 — W satisfies:

S$>0, A-1(S)>0, and So =0,

then X* = oo T is the unique optimal solution to the SDP.




Dual certificate

W: Observed aggregate similarity matrix

Lemma

Suppose there is a N x N diagonal matrix D such that
S:=D+ 117 — W satisfies:

S>=0, Av_1(S)>0, and So =0,

then X* = oo T is the unique optimal solution to the SDP.

Weak duality: Optimality
Let X be primal feasible and X* = oo . Then
(W, X) < trace (D)
=(D,X) = (D,X%) (since Xj = Xj; = 1)
= (W +S —vJ, X*) = (W, X*) (since (§,X*) =o' (S¢)=0)



Dual certificate

W: Observed aggregate similarity matrix

Lemma

Suppose there is a N x N diagonal matrix D such that
S:=D+ 117 — W satisfies:

S >0, )\N—l(s) > 0, and So =0,

then X* = oo | is the unique optimal solution to the SDP.

Strong duality: Uniqueness
Let X be an optimal solution and X* = oo ". Then

($,X) =(D+J—-W,X)=(D—-W,X)
= (D — W, X*) (W, X) = (W, X*) and X; = X} =1)
=(5,X*)=0 (since (S,X*) =o' (So) = 0)

Since S = 0 and Ay—1 > 0, the Null(S) is spanned by o only.
X > 0 now implies that it should be a multiple of oo " as well.



Proof: Dual certificate

W: Observed aggregate similarity matrix

Lemma

Suppose there is a N x N diagonal matrix D such that
S:=D+ 117 — W satisfies:

S>=0, A_-1(S)>0, and So =0,

then X* = oo T is the unique optimal solution to the SDP.




Proof: Dual certificate

W: Observed aggregate similarity matrix

Lemma

Suppose there is a N x N diagonal matrix D such that
S:=D+ 117 — W satisfies:

S>=0, A_-1(S)>0, and So =0,

then X* = oo T is the unique optimal solution to the SDP.

Taking
D ==Y Wjoioj,
J

easy to verify So = 0. Suffices to show

P ( inf  x"Sx > 0) =1-o0(1).

xLo:||x|l2=1



Proof: Bounds

Let EW s the expected aggregate similarity matrix. Then

x"Sx > minD; — |W — EW/|5.
1




Proof: Bounds

Let EW s the expected aggregate similarity matrix. Then

x"Sx > minD; — |W — EW/|5.
1

Proposition

Let | > 1. Then there exists a constant ¢ > 0 dependent on model
parameters such that for all i € [N],

]P(D,',‘ > 6|Og N) >1- O(N_l).

| A\

Proposition
There exists a constant C such that

P (|W - EW[, < CMy/log N) > 1 — O(N~™).




Proof: Main ingredients

> Rank-2 decomposition:

EW — (Win 'ZWout> 11T + (Win _2Wout) O'O'T N WinlNy

where Win = E[VV,'J'|O',' = O'J'] and Wout = E[VV,']‘O’,‘ 75 O'J'].

> Assortativity:
log N
Win — Wout ~ mg



Summary

> Multilayer HSBM (o, A) ~ HSBM(N, M, d, (oA™))
» Inhomogeneous hyperedge probabilities

> Assortative and disassortative cases

> Exact recovery using the similarity matrix W

SDP algorithm recovers the clusters exactly when [ > 1.



Summary

> Multilayer HSBM (o, A) ~ HSBM(N, M, d, (oA™))
» Inhomogeneous hyperedge probabilities
> Assortative and disassortative cases
> Exact recovery using the similarity matrix W
SDP algorithm recovers the clusters exactly when [ > 1.

Future work

> Asymmetric: ((eeeee) 7 Y(esees)
» Necessary conditions for exact recovery from W
» For different hyperedge sizes d

> M, d depending on N
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