Community detection on multilayer hypergraphs using the aggregate similarity matrix

Kalle Alaluusua, Konstantin Avrachenkov, B R Vinay Kumar,
Lasse Leskelä

AROMATH Seminar
May 10, 2023
INRIA, France

Motivating example:

Motivating example

Multilayer hypergraph

- N Vertices $-\{1, \cdots, N\}=:[N]$. Two communities $\{-1,+1\}$.
- M Layers - $\{1, \cdots, M\}$ indexed by m
- d vertices in every hyperedge

Multilayer HSBM

- N Vertices $-\{1, \cdots, N\}=:[N]$. Two communities $\{-1,+1\}$.
- M Layers $-\{1, \cdots, M\}$ indexed by m
- d vertices in every hyperedge

Step 1: Sample the communities $\sigma \sim \operatorname{Unif}\left(\left\{\sigma \in\{ \pm 1\}^{N} \mid\right.\right.$ equal number of +1 and -1$\left.\}\right)$
Step 2: For each layer $m \in\{1, \cdots, M\}$ and for each hyperedge $e \subset[N]$ with $|e|=d$, set
$A_{e}^{(m)}=\left\{\begin{array}{llr}1 & \text { with prob. } p_{e}^{(m)} & (e \text { is present in layer } m) \\ 0 & \text { with prob. } 1-p_{e}^{(m)} & (e \text { is not present in layer } m)\end{array}\right.$,
Hypergraph incidence matrix - $\mathbf{A}=\left(A_{e}^{(m)}\right)$

Multilayer HSBM

- N Vertices $-\{1, \cdots, N\}=:[N]$. Two communities $\{-1,+1\}$.
- M Layers $-\{1, \cdots, M\}$ indexed by m
- d vertices in every hyperedge

Step 1: Sample the communities $\sigma \sim \operatorname{Unif}\left(\left\{\sigma \in\{ \pm 1\}^{N} \mid\right.\right.$ equal number of +1 and -1$\left.\}\right)$
Step 2: For each layer $m \in\{1, \cdots, M\}$ and for each hyperedge $e \subset[N]$ with $|e|=d$, set
$A_{e}^{(m)}=\left\{\begin{array}{llr}1 & \text { with prob. } p_{e}^{(m)} & (e \text { is present in layer } m) \\ 0 & \text { with prob. } 1-p_{e}^{(m)} & (e \text { is not present in layer } m)\end{array}\right.$,
Hypergraph incidence matrix - $\mathbf{A}=\left(A_{e}^{(m)}\right)$

$$
(\sigma, \mathbf{A}) \sim \operatorname{HSBM}\left(N, M, d,\left(p_{e}^{(m)}\right)\right)
$$

Multilayer HSBM: Specifications

$$
(\sigma, \mathbf{A}) \sim \operatorname{HSBM}\left(N, M, d,\left(p_{e}^{(m)}\right)\right)
$$

1. Community profile of hyperedge e denoted $\boldsymbol{\tau} \equiv(\boldsymbol{\tau}(e))$

$$
\begin{gathered}
\tau\left(\begin{array}{ll}
\tau & (3,2), \quad \tau(2,5), \quad \tau(:+1)=(3,0) \\
0 & p_{e}^{(m)}=p_{\tau(e)}^{(m)}
\end{array}\right.
\end{gathered}
$$

For two communities, $\boldsymbol{\tau}(e) \in\{(0, d),(1, d-1), \cdots,(d, 0)\}$.
2. Scaling regime: For an edge with community profile $\boldsymbol{\tau}(e)$,

$$
p_{\tau(e)}^{(m)}=\alpha_{\tau(e)}^{(m)} \frac{\log N}{\binom{N-1}{d-1}}
$$

3. Symmetricity:

$$
\alpha_{(r, d-r)}^{(m)}=\alpha_{(d-r, r)}^{(m)}
$$

Multilayer HSBM: Specifications

$$
(\sigma, \mathbf{A}) \sim \operatorname{HSBM}\left(N, M, d,\left(p_{e}^{(m)}\right)\right)
$$

1. Community profile of hyperedge e denoted $\boldsymbol{\tau} \equiv(\boldsymbol{\tau}(e))$

$$
\begin{aligned}
& p_{e}^{(m)}=p_{\tau(e)}^{(m)}
\end{aligned}
$$

For two communities, $\boldsymbol{\tau}(e) \in\{(0, d),(1, d-1), \cdots,(d, 0)\}$.
2. Scaling regime: For an edge with community profile $\boldsymbol{\tau}(e)$,

$$
p_{\tau(e)}^{(m)}=\alpha_{\tau(e)}^{(m)} \frac{\log N}{\binom{N-1}{d-1}} .
$$

3. Symmetricity:

$$
\alpha_{(r, d-r)}^{(m)}=\alpha_{(d-r, r)}^{(m)}
$$

$$
(\sigma, \mathbf{A}) \sim \operatorname{HSBM}\left(N, M, d,\left(\alpha_{\tau}^{(m)}\right)\right)
$$

Homogeneous: $\alpha_{\boldsymbol{\tau}}=\alpha$ if $\boldsymbol{\tau} \in\{(d, 0),(0, d)\}$; else $\alpha_{\boldsymbol{\tau}}=\beta$.
Gaudio, J. and Joshi, N., 2022. Community detection in the hypergraph sbm: Optimal recovery given the similarity matrix. arXiv preprint arXiv:2208.12227.

Assortativity

$\alpha(\bullet \bullet \bullet \bullet \bullet)$

$\alpha_{(\bullet \bullet \bullet \bullet \bullet)}$
$\alpha_{(\bullet \bullet \bullet \bullet \bullet)}$

Assortativity

Assortative:

$$
\left.\alpha_{(\bullet \bullet \bullet \bullet \bullet)} \quad>\quad \alpha_{(\bullet \bullet \bullet \bullet \bullet)} \quad>\quad \alpha_{(\bullet \bullet \bullet \bullet \bullet}\right)
$$

Assortativity

Assortative:

$$
\begin{array}{ccc}
\alpha_{(\bullet \bullet \bullet \bullet \bullet)} & >\alpha_{(\bullet \bullet \bullet \bullet \bullet)} & >\alpha_{(\bullet \bullet \bullet \bullet \bullet)} \\
\|_{(\bullet \bullet \bullet \bullet \bullet)} & >\alpha_{(\bullet \bullet \bullet \bullet \bullet)} & >\alpha_{(\bullet \bullet \bullet \bullet \bullet)}
\end{array}
$$

Assortativity

Assortative:

$$
\begin{array}{ccccc}
\alpha_{(\bullet \bullet \bullet \bullet \bullet)} & >\alpha_{(\bullet \bullet \bullet \bullet \bullet)} & > & \alpha_{(\bullet \bullet \bullet \bullet \bullet)} \\
\| & & \| & & \| \\
\alpha_{(\bullet \bullet \bullet \bullet \bullet)} & > & \alpha_{(\bullet \bullet \bullet \bullet \bullet)} & > & \alpha_{(\bullet \bullet \bullet \bullet \bullet)}
\end{array}
$$

Disassortative:

$$
\alpha_{(\bullet \bullet \bullet \bullet \bullet)}<\alpha_{(\bullet \bullet \bullet \bullet \bullet)}<\alpha_{(\bullet \bullet \bullet \bullet \bullet)}
$$

Assortative:

Disassortative:

$$
\alpha_{(\bullet \bullet \bullet \bullet \bullet)}<\alpha_{(\bullet \bullet \bullet \bullet \bullet)}<\alpha_{(\bullet \bullet \bullet \bullet \bullet)}
$$

- Each layer could be either assortative or disassortative.
- Define assortativity

$$
\xi:=\sum_{m=1}^{M} \sum_{r=0}^{d-1}\binom{d-1}{r}(d-1-2 r) \alpha_{(r, d-r)}^{(m)} .
$$

- Assortative: $\xi>0$ and Disassortative: $\xi<0$.
- For $d=5, \quad \xi=4 \alpha_{(0,5)}+4 \alpha_{(1,4)}-8 \alpha_{(2,3)}$.

Motivation

Motivation

Recover communities while maintaining privacy.

Similarity matrix

Data: $(\sigma, \mathbf{A}) \sim \operatorname{HSBM}\left(N, M, d,\left(\alpha_{\tau}^{(m)}\right)\right)$
Given: $N \times N$ aggregate similarity matrix $\mathbf{W}=\left(\mathbf{W}_{i j}\right)$, such that

$$
\mathbf{W}_{i j}=\sum_{m=1}^{M} W_{i j}^{(m)}
$$

where

$$
\begin{aligned}
W_{i j}^{(m)} & =\# \text { of hyperedges that contain both } i \text { and } j \text { in layer } m \\
& =\sum_{e: e \ni i, j} A_{e}^{(m)}
\end{aligned}
$$

Data: $(\sigma, \mathbf{A}) \sim \operatorname{HSBM}\left(N, M, d,\left(\alpha_{\tau}^{(m)}\right)\right)$
Given: $N \times N$ aggregate similarity matrix $\mathbf{W}=\left(\mathbf{W}_{i j}\right)$, such that

$$
\mathbf{W}_{i j}=\sum_{m=1}^{M} W_{i j}^{(m)}
$$

where

$$
\begin{aligned}
W_{i j}^{(m)} & =\# \text { of hyperedges that contain both } i \text { and } j \text { in layer } m \\
& =\sum_{e: e \ni i, j} A_{e}^{(m)}
\end{aligned}
$$

Want to find an estimate $\hat{\sigma}^{(N)}$ of $\boldsymbol{\sigma}\left(\equiv \boldsymbol{\sigma}^{(N)}\right)$ that exactly recovers the communities,

$$
\lim _{N \rightarrow \infty} \mathbb{P}\left(\hat{\boldsymbol{\sigma}}^{(N)} \in\left\{ \pm \boldsymbol{\sigma}^{(N)}\right\}\right)=1
$$

A first approach

In the assortative case:

- Solve the min-bisection problem:

$$
\begin{equation*}
\max \sum_{i, j} W_{i j} x_{i} x_{j} \quad \text { subject to } \mathbf{x} \in\{ \pm 1\}^{N}, \mathbf{1}^{T} \mathbf{x}=0 \tag{1}
\end{equation*}
$$

[^0]
A first approach

In the assortative case:

- Solve the min-bisection problem:

$$
\begin{equation*}
\max \sum_{i, j} W_{i j} x_{i} x_{j} \quad \text { subject to } \mathbf{x} \in\{ \pm 1\}^{N}, \mathbf{1}^{T} \mathbf{x}=0 \tag{1}
\end{equation*}
$$

- SDP relaxation ${ }^{1}$:

$$
\begin{align*}
& \text { maximize } \sum_{1 \leq i<j \leq N} W_{i j} X_{i j} \\
& \text { subject to } \sum_{1 \leq i<j \leq N} X_{i j}=0, \tag{2}\\
& X_{i i}=1 \text { for all } i \in[N] \\
& \mathbf{X} \succeq 0 .
\end{align*}
$$

- Any solution \mathbf{x} of (1) is a solution of (2) by taking $\mathbf{X}=\mathrm{xx}^{\top}$.

[^1]
Algorithm and main result

Step 1
Given $s \in\{ \pm 1\}$ and \mathbf{W}, solve:

$$
\begin{aligned}
& \text { maximize } \sum_{1 \leq i<j \leq N} s W_{i j} X_{i j} \\
& \text { subject to } \sum_{1 \leq i<j \leq N} X_{i j}=0, \\
& X_{i i}=1 \text { for all } i \in[N] \\
& \mathbf{X} \succeq 0 .
\end{aligned}
$$

Step 2

The optimal solution
$\mathbf{X}^{*}=\sum_{i=1}^{N} \lambda_{i} \boldsymbol{v}_{\boldsymbol{i}} \boldsymbol{v}_{\boldsymbol{i}}^{\top}$ with
$\lambda_{1} \geq \cdots \geq \lambda_{N}$.
Step 3
Output $\hat{\boldsymbol{\sigma}}=\operatorname{sgn}\left(\boldsymbol{v}_{\mathbf{1}}\right)$

Algorithm and main result

Step 1
Given $s \in\{ \pm 1\}$ and \mathbf{W}, solve:

$$
\operatorname{maximize} \sum_{1 \leq i<j \leq N} s W_{i j} X_{i j}
$$

subject to $\sum_{1 \leq i<j \leq N} X_{i j}=0$,

$$
X_{i i}=1 \text { for all } i \in[N]
$$

$$
x \succeq 0
$$

Step 2
The optimal solution
$\mathbf{X}^{*}=\sum_{i=1}^{N} \lambda_{i} \boldsymbol{v}_{\boldsymbol{i}} \boldsymbol{v}_{\boldsymbol{i}}^{\top}$ with
$\lambda_{1} \geq \cdots \geq \lambda_{N}$.
Step 3
Output $\hat{\boldsymbol{\sigma}}=\operatorname{sgn}\left(\boldsymbol{v}_{\mathbf{1}}\right)$

Theorem

Suppose $(\boldsymbol{\sigma}, \mathbf{A}) \sim \operatorname{HSBM}\left(N, M, d,\left(\alpha_{\tau}^{(m)}\right)\right)$, and let \mathbf{W} be the aggregate similarity matrix of \mathbf{A}. When $I>1$, the above algorithm with \mathbf{W} and $s=\operatorname{sgn}(\xi)$ as inputs, exactly recovers σ.

$$
I=\sup _{\lambda \in \mathbb{R}} \sum_{m=1}^{M} \sum_{r=0}^{d-1} 2^{-(d-1)}\binom{d-1}{r} \alpha_{(r, d-r)}^{(m)}\left(1-e^{-\lambda(d-1-2 r)}\right)
$$

Dual formulation

Primal problem:

$$
\begin{array}{rlll}
\max & \sum_{1 \leq i<j \leq N} W_{i j} X_{i j} & \min & \left\langle\mathbf{W}^{\prime}, \mathbf{X}\right\rangle \\
\text { subject to } & X_{i i}=1, \forall i \in[N] \equiv \text { subject to } & \left\langle\mathbf{A}_{i}, \mathbf{X}\right\rangle=1, \forall i \in[N] \\
& \langle\mathbf{X}, \mathbf{J}\rangle=0, \\
& \left\langle\mathbf{X}, \mathbf{1 1}^{T}\right\rangle=0, & & -\mathbf{X} \preceq 0 . \\
\mathbf{X} \succeq 0 . & &
\end{array}
$$

where

$$
\left(\mathbf{A}_{i}\right)_{j k}=0 \text { for } j \neq k, \text { and }\left(\mathbf{A}_{i}\right)_{j j}= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

Lagrangian:

$$
\mathcal{L}(\mathbf{X}, \mathbf{S}, \nu, \boldsymbol{d})=\left\langle\mathbf{W}^{\prime}, \mathbf{X}\right\rangle-\langle\mathbf{S}, \mathbf{X}\rangle+\nu\langle\mathbf{X}, \mathbf{J}\rangle+\sum_{i=1}^{N} d_{i}\left(\left\langle\mathbf{A}_{i}, \mathbf{X}\right\rangle-1\right) .
$$

where $\mathbf{S} \succeq 0$.

Dual objective:

$$
\begin{aligned}
g(\mathbf{S}, \nu, \boldsymbol{d}) & =\inf _{\mathbf{X}} \mathcal{L}(\mathbf{X}, \mathbf{S}, \nu, \boldsymbol{d}) \\
& =\inf _{\mathbf{X}}\left\langle\mathbf{W}^{\prime}-\mathbf{S}+\nu \mathbf{J}+\operatorname{diag}(\boldsymbol{d}), \mathbf{X}\right\rangle-\sum_{i=1}^{N} d_{i} \\
& =\inf _{\mathbf{X}}\left\langle\mathbf{W}^{\prime}-\mathbf{S}+\nu \mathbf{J}+\mathbf{D}, \mathbf{X}\right\rangle-\operatorname{trace}(\mathbf{D}) \\
& = \begin{cases}-\operatorname{trace}(\mathbf{D}) & \text { if } \mathbf{W}^{\prime}-\mathbf{S}+\nu \mathbf{J}+\mathbf{D}=0 \\
-\infty & \text { o.w. }\end{cases}
\end{aligned}
$$

Dual problem:

$$
\begin{aligned}
\max & -\operatorname{trace}(\mathbf{D}) \\
\text { subject to } & \mathbf{W}^{\prime}-\mathbf{S}+\nu \mathbf{J}+\mathbf{D}=0, \\
& \mathbf{S} \succeq 0
\end{aligned} \quad \begin{aligned}
\min \quad \text { trace }(\mathbf{D}) \\
\text { subject to } \mathbf{D}+\nu \mathbf{J}-\mathbf{W} \succeq 0 .
\end{aligned}
$$

W: Observed aggregate similarity matrix

Lemma

Suppose there is a $N \times N$ diagonal matrix \mathbf{D} such that $\mathbf{S}:=\mathbf{D}+\mathbf{1 1}^{T}-\mathbf{W}$ satisfies:

$$
\mathbf{S} \succeq 0, \quad \lambda_{N-1}(\mathbf{S})>0, \quad \text { and } \quad \mathbf{S} \boldsymbol{\sigma}=0
$$

then $\mathbf{X}^{*}=\sigma \boldsymbol{\sigma}^{\top}$ is the unique optimal solution to the SDP.

W: Observed aggregate similarity matrix

Lemma

Suppose there is a $N \times N$ diagonal matrix \mathbf{D} such that $\mathbf{S}:=\mathbf{D}+\mathbf{1 1}^{T}-\mathbf{W}$ satisfies:

$$
\mathbf{S} \succeq 0, \quad \lambda_{N-1}(\mathbf{S})>0, \quad \text { and } \quad \mathbf{S} \boldsymbol{\sigma}=0
$$

then $\mathbf{X}^{*}=\sigma \boldsymbol{\sigma}^{\top}$ is the unique optimal solution to the SDP.
Weak duality: Optimality
Let X be primal feasible and $X^{*}=\sigma \sigma^{T}$. Then
$\langle\mathbf{W}, \mathbf{X}\rangle \leq \operatorname{trace}(\mathbf{D})$

$$
\begin{array}{ll}
=\langle\mathbf{D}, \mathbf{X}\rangle=\left\langle\mathbf{D}, \mathbf{X}^{*}\right\rangle & \left(\text { since } X_{i i}=X_{i i}^{*}=1\right) \\
=\left\langle\mathbf{W}+\mathbf{S}-\nu \mathbf{J}, \mathbf{X}^{*}\right\rangle=\left\langle\mathbf{W}, \mathbf{X}^{*}\right\rangle & \left(\text { since }\left\langle\mathbf{S}, \mathbf{X}^{*}\right\rangle=\sigma^{T}(S \boldsymbol{\sigma})=0\right)
\end{array}
$$

Dual certificate

W: Observed aggregate similarity matrix

Lemma

Suppose there is a $N \times N$ diagonal matrix \mathbf{D} such that $\mathbf{S}:=\mathbf{D}+\mathbf{1 1}^{T}-\mathbf{W}$ satisfies:

$$
\mathbf{S} \succeq 0, \quad \lambda_{N-1}(\mathbf{S})>0, \quad \text { and } \quad \mathbf{S} \sigma=0
$$

then $\mathbf{X}^{*}=\sigma \boldsymbol{\sigma}^{\top}$ is the unique optimal solution to the SDP.
Strong duality: Uniqueness
Let \tilde{X} be an optimal solution and $X^{*}=\boldsymbol{\sigma} \boldsymbol{\sigma}^{\top}$. Then

$$
\begin{array}{rlr}
\langle\mathbf{S}, \tilde{\mathbf{X}}\rangle & =\langle\mathbf{D}+\mathbf{J}-\mathbf{W}, \tilde{\mathbf{X}}\rangle=\langle\mathbf{D}-\mathbf{W}, \tilde{\mathbf{X}}\rangle \\
& =\left\langle\mathbf{D}-\mathbf{W}, \mathbf{X}^{*}\right\rangle & \left(\langle\mathbf{W}, \tilde{\mathbf{x}}\rangle=\left\langle\mathbf{W}, \mathbf{X}^{*}\right\rangle \text { and } \tilde{X}_{i i}=X_{i i}^{*}=1\right) \\
& =\left\langle\mathbf{S}, \mathbf{X}^{*}\right\rangle=0 & \left.\quad \text { (since }\left\langle\mathbf{S}, \mathbf{X}^{*}\right\rangle=\boldsymbol{\sigma}^{T}(S \boldsymbol{\sigma})=0\right)
\end{array}
$$

Since $\mathbf{S} \succeq 0$ and $\lambda_{N-1}>0$, the $\operatorname{Null}(\mathbf{S})$ is spanned by $\boldsymbol{\sigma}$ only. $\tilde{\mathbf{X}} \succeq 0$ now implies that it should be a multiple of $\sigma \sigma^{\top}$ as well.

W: Observed aggregate similarity matrix

Lemma

Suppose there is a $N \times N$ diagonal matrix \mathbf{D} such that $\mathbf{S}:=\mathbf{D}+\mathbf{1 1}^{T}-\mathbf{W}$ satisfies:

$$
\mathbf{S} \succeq 0, \quad \lambda_{N-1}(\mathbf{S})>0, \quad \text { and } \quad \mathbf{S} \boldsymbol{\sigma}=0
$$

then $\mathbf{X}^{*}=\sigma \sigma^{\top}$ is the unique optimal solution to the SDP.

W: Observed aggregate similarity matrix

Lemma

Suppose there is a $N \times N$ diagonal matrix \mathbf{D} such that $\mathbf{S}:=\mathbf{D}+\mathbf{1 1}^{T}-\mathbf{W}$ satisfies:

$$
\mathbf{S} \succeq 0, \quad \lambda_{N-1}(\mathbf{S})>0, \quad \text { and } \quad \mathbf{S} \sigma=0
$$

then $\mathbf{X}^{*}=\sigma \sigma^{\top}$ is the unique optimal solution to the SDP.
Taking

$$
D_{i j}:=\sum_{j} W_{i j} \sigma_{i} \sigma_{j}
$$

easy to verify $\mathbf{S} \boldsymbol{\sigma}=0$. Suffices to show

$$
\mathbb{P}\left(\inf _{x \perp \sigma:\|x\|_{2}=1} x^{\top} S x>0\right)=1-o(1)
$$

Lemma

Let $\mathbb{E W}$ is the expected aggregate similarity matrix. Then

$$
\mathbf{x}^{T} \mathbf{S} \mathbf{x} \geq \min _{i} D_{i i}-\|\mathbf{W}-\mathbb{E} \mathbf{W}\|_{2}
$$

Lemma

Let $\mathbb{E W}$ is the expected aggregate similarity matrix. Then

$$
\mathbf{x}^{T} \mathbf{S} \mathbf{x} \geq \min _{i} D_{i i}-\|\mathbf{W}-\mathbb{E} \mathbf{W}\|_{2}
$$

Proposition

Let $I>1$. Then there exists a constant $\epsilon>0$ dependent on model parameters such that for all $i \in[N]$,

$$
\mathbb{P}\left(D_{i i}>\epsilon \log N\right) \geq 1-o\left(N^{-1}\right)
$$

Proposition

There exists a constant C such that

$$
\mathbb{P}\left(\|\mathbf{W}-\mathbb{E} \mathbf{W}\|_{2} \leq C M \sqrt{\log N}\right) \geq 1-O\left(N^{-11}\right)
$$

- Rank-2 decomposition:

$$
\begin{aligned}
& \mathbb{E} \mathbf{W}=\left(\frac{w_{\mathrm{in}}+w_{\mathrm{out}}}{2}\right) \mathbf{1 1}^{T}+\left(\frac{w_{\mathrm{in}}-w_{\mathrm{out}}}{2}\right) \boldsymbol{\sigma} \boldsymbol{\sigma}^{T}-w_{\mathrm{in}} \mathbf{I}_{N}, \\
& \text { where } w_{\mathrm{in}}=\mathbb{E}\left[W_{\mathrm{ij}} \mid \sigma_{i}=\sigma_{j}\right] \text { and } w_{\text {out }}=\mathbb{E}\left[W_{i j} \mid \sigma_{i} \neq \sigma_{j}\right] .
\end{aligned}
$$

- Assortativity:

$$
w_{\mathrm{in}}-w_{\mathrm{out}} \approx \frac{\log N}{2^{d-2} N} \xi
$$

- Multilayer $\operatorname{HSBM}(\sigma, \mathbf{A}) \sim \operatorname{HSBM}\left(N, M, d,\left(\alpha_{\tau}^{(m)}\right)\right)$
- Inhomogeneous hyperedge probabilities
- Assortative and disassortative cases
- Exact recovery using the similarity matrix W

SDP algorithm recovers the clusters exactly when $I>1$.

- Multilayer $\operatorname{HSBM}(\sigma, \mathbf{A}) \sim \operatorname{HSBM}\left(N, M, d,\left(\alpha_{\tau}^{(m)}\right)\right)$
- Inhomogeneous hyperedge probabilities
- Assortative and disassortative cases
- Exact recovery using the similarity matrix W SDP algorithm recovers the clusters exactly when $I>1$.

Future work

- Asymmetric: $\alpha_{(\bullet \bullet \bullet \bullet \bullet)} \neq \alpha_{(\bullet \bullet \bullet \bullet \bullet)}$
- Necessary conditions for exact recovery from W
- For different hyperedge sizes d
- M, d depending on N

Thank you !!

[^0]: ${ }^{1}$ Kim, C., Bandeira, A.S. and Goemans, M.X., 2018. Stochastic block model for hypergraphs: Statistical limits and a semidefinite programming approach. arXiv preprint arXiv:1807.02884.

[^1]: ${ }^{1}$ Kim, C., Bandeira, A.S. and Goemans, M.X., 2018. Stochastic block model for hypergraphs: Statistical limits and a semidefinite programming approach. arXiv preprint arXiv:1807.02884.

