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Sensors in a field

Update sensing parameters
among all nodes

Network of IoT nodes

Over-the-air programming of the
nodes

Broadcast information with the following constraints

Nodes:
▸ Energy constrained
▸ Limited computational ability
▸ Limited knowledge of the network

Algorithm:
▸ Completely
distributed

▸ Run in finite time
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Abstraction

▸ Broadcast over an ad-hoc network

A network of nodes G = (V ,E).
∣V ∣ = N.
A source node s has k data packets to
be broadcast to all the other nodes in
an ad-hoc network.

Flooding
▸ Each node forwards every
received packet to all its
one-hop neighbours.

▸ Subsequent receptions of the
same packet are neglected.

▸ Total number of transmissions
= kN.

▸ Wasteful 1: nodes will receive
same packet multiple times

1Y.-C. Tseng, S.-Y. Ni, Y.-S. Chen, and J.-P. Sheu, “The broadcast storm problem in a mobile ad hoc
network," Wireless Networks, vol. 8, no. 2/3, pp. 153–167, 2002.

6 / 29



Probabilistic forwarding

▸ Retransmission probability p.

▸ Source transmits all k packets to all its neighbors.

▸ Each node, upon receiving packet #j for the first time,
forwards it to all its neighbours with probability p; does
nothing with probability 1 − p.

▸ Subsequent receptions of the same packet are neglected.

1Y. Sasson, D. Cavin, and A. Schiper, “Probabilistic broadcast for flooding in wireless mobile ad hoc
networks," in Proc. IEEE Wireless Communications and Networking Conf. (WCNC) 2003, vol. 2, March 16–20,
2003, pp. 1124–1130.

1Z. J. Haas, J. Y. Halpern, and L. Li, “Gossip-based ad hoc routing," IEEE/ACM Trans. Networking, vol. 14,
no. 3, pp. 479–491, 2006.
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Probabilistic forwarding

Lesser number of
transmissions (kNp)
compared to flooding

(kN).

BUT
Information lost even if a
single packet out of the k
packets is not received.
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Introducing Coded Packets
Coding:

▸ The source node encodes the k data packets into n coded
packets using a Maximum Distance Separable (MDS) code.

▸ MDS code ensures that reception of any k of the n coded
packets by any node, suffices to recover the original k data
packets.

Probabilistic forwarding of coded packets:
▸ Source node transmits all n coded packets to its one-hop
neighbours.

▸ Thereafter, the probabilistic forwarding protocol takes over.
Each packet is forwarded independently of other packets and
other nodes.

▸ Nodes which receive at least k out of n packets are termed
successful receivers

▸ A near-broadcast is when the expected fraction of successful
receivers is ≥ 1 − δ.
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Illustration

Packet 1 Packet 2 Packet 3

Successful receivers

▸ k = 2,n = 3
▸ - Received and transmitted the
packet.

▸ - Received but did not transmit
the packet.

▸ - Did not receive the packet.
▸ - Successful receivers
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Formal Problem Statement

Given:
▸ a connected graph G with N nodes
▸ number of data packets, k
▸ number of coded packets, n
▸ δ close to 0.
▸ retransmission probability p

Define
▸ Rk,n = # nodes that receive at least k out of n coded packets

Want to find
▸ pk,n,δ = minimum p such that Ep[

1
N Rk,n] ≥ 1 − δ

▸ τk,n,δ = Epk,n,δ[total # transmissions over all N nodes of G]

On what graphs is coding along with probabilistic forwarding
beneficial?
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On well-connected graphs

31 × 31 grid

1. pk,n,δ decreases (to 0) as n
increases; for fixed k and δ.

2. τk,n,δ = ∑
n
i=1 Ti , where Ti is

the expected number of
transmissions of packet i .

▸ Each term Ti decreases as
n increases since pk,n,δ
decreases.

▸ The number of terms in
the above equation
increases with n.

k = 100 packets and δ = 0.1
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Why pk,n,δ ↘ 0?
Rk,n = # nodes that receive at least k out of n coded packets.
pk,n,δ = inf{p ∣ Ep[

1
N Rk,n] ≥ 1 − δ}

▸ For j = 1,2,⋯, ⌊ n
k ⌋, let Aj be the event that the jth set of k

coded packets is received by at least 1 − δ/2 fraction of the
nodes.

▸ The events Aj are mutually independent and have the same
probability of occurrence.

▸ For any p > 0, we have P(Aj) being small but strictly positive.
▸ Hence, P(at least one Aj occurs) ≥ 1 − δ/2 for all sufficiently
large n, so that 1

N Rk,n ≥ 1 − δ/2 with probability at least
1 − δ/2.

▸ Thus, for any p > 0, we have pk,n,δ ≤ p for sufficiently large n.
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On trees
Rooted binary tree of height H = 10 with k = 100 and δ = 0.1

...

... ... ... ... ...

...

Source ` = 0

` = 1

` = 2

` = H
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▸ Large fraction of nodes on
the leaves

▸ Unique path from the source
to any node on the tree

▸ It can be shown that

pk,n,δ ≈ c (
k
n
)

1
H−1

for some constant c
dependent on H and δ.

▸ This gives

τk,n,δ ≈ n
(2c)H (k

n)
H

H−1 − 1

2c (k
n)

1
H−1 − 1

which is increasing in n.
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On the grid
Probabilistic forwarding on

the m ×m grid, Γm

We will see that the site
percolation process on Z2 is a
faithful model for the
probabilistic forwarding
mechanism on Z2.

m→∞
Ð→

Probabilistic forwarding on
the Z2 lattice

↓

Site percolation on the Z2

lattice
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Site percolation on Z2 - Definitions

▸ Associate each vertex (site) u of Z2

with a Bernoulli(p) random variable
Xu. The vertex is open if Xu = 1; else
closed.

▸ Two open sites u and v are said to be
connected by an open path (u←→v), if
there is a path of open sites from u to
v .
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Site percolation on Z2- Transmitters

▸ Associate each vertex (site) u of Z2 with
a Bernoulli(p) random variable Xu. The
vertex is open if Xu = 1; else closed.

▸ Two open sites u and v are said to be
connected by an open path (u←→v), if
there is a path of open sites from u to v .

▸ Probabilistic forwarding of a single packet over Z2 is modelled
by site percolation on Z2 conditioned on the origin 0 being
open.

▸ Nodes transmitting the jth packet (for fixed j ∈ [n]) may be
viewed as open sites of a site percolation process which are
connected to the origin by an open path. Call this cluster of
nodes as Co

j .
▸ The total number of transmissions is simply ∑n

j=1 ∣Co
j ∣.
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Site percolation on Z2
− Receivers

▸ The boundary, ∂Co
j , is the set of all closed

sites which are adjacent to a site in Co
j .

▸ The set Co+
j ∶= Co

j ∪ ∂Co
j is called the

extended cluster of the origin.

For site percolation on Z2, there exists pc ∈ (0,1) s.t. for p > pc ,
▸ There exists a unique infinite open cluster (IOC), C , almost
surely. pc ≈ 0.59 for site percolation.

▸ Hence, there also exists a unique infinite extended cluster
(IEC), C+ = C ∪ ∂C , a.s..

▸ θ(p) ∶= percolation probability, i.e., P(0 ∈ C)

θ+(p) ∶= P(0 ∈ C+)

Lemma: θ+(p) = θ(p)
p .

Proof: {0 ∈ C} = {0 ∈ C+ and 0 is open}
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Ergodic theorems
For p > pc , if C is the unique IOC and C+ is the unique IEC, then,

lim
m→∞

∣C ∩ Γm∣

m2 = θ(p) a.s.

Similarly,

lim
m→∞

∣C+ ∩ Γm∣

m2 = θ+(p) a.s.

Using DCT, expected values also
converge.

0.4 0.5 0.6 0.7 0.8 0.9 1

p

0

0.5

1
 (p)
+

(p)
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Site percolation and probabilistic forwarding

▸ Prob. forwarding of a single packet over Z2 is modelled by
site percolation on Z2 conditioned on the origin 0 being open.

▸ n pkts ↔ n independent site percolations with 0 open in all.

▸ Rpr .fwd
k,n (Γm) ∶=

{sites in Γm that receive at least k out of n pkts}

▸ We are interested in finding
pk,n,δ = min{p ∣ Ep [ 1

m2 ∣R
pr .fwd
k,n (Γm)∣] ≥ 1 − δ}

Theorem
For p > pc , we have

lim
m→∞E [

1
m2 ∣R

pr .fwd
k,n (Γm)∣] =

n
∑
t=k

t
∑
j=k

(
n
t
)(

t
j
)(θ+(p))t+j

(1−θ+(p))n−j .
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Total transmissions
Consider the transmissions of a single packet on Z2

▸ Co := open cluster containing 0 (set of transmitters)

▸ The expected number of transmissions on a large grid, Γm, is
given by E[∣Co ∩ Γm∣ ∣ 0 is open].

Proposition
For p > pc , we have

lim
m→∞

1
m2E[∣Co

∩ Γm∣ ∣ 0 is open] =
θ(p)2

p
.

▸ Hence, for n coded packets, with each packet being
transmitted with probability pk,n,δ > pc , we obtain

τk,n,δ ≈ nm2 θ
2(pk,n,δ)

pk,n,δ
.
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Comparison with simulation results
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Proof sketch
We want to show,

lim
m→∞E [

1
m2 ∣R

pr .fwd
k,n (Γm)∣] =

n
∑
t=k

t
∑
j=k

(
n
t
)(

t
j
)(θ+(p))t+j

(1 − θ+(p))n−j .

Step 1: Rpr .fwd
k,n (Z2) ∶= {sites that receive at least k out of n pkts on Z2}

lim
m→∞E [

1
m2 ∣R

pr .fwd
k,n (Γm)∣] = lim

m→∞E [
1

m2 ∣R
pr .fwd
k,n (Z2

) ∩ Γm∣]

Probabilistic forwarding on the
m ×m grid, Γm

Probabilistic forwarding on the
Z2 lattice

24 / 29



Proof sketch
We want to show,

lim
m→∞E [

1
m2 ∣R

pr .fwd
k,n (Γm)∣] =

n
∑
t=k

t
∑
j=k

(
n
t
)(

t
j
)(θ+(p))t+j

(1 − θ+(p))n−j .

Step 1: Rpr .fwd
k,n (Z2) ∶= {sites that receive at least k out of n pkts on Z2}

lim
m→∞E [

1
m2 ∣R

pr .fwd
k,n (Γm)∣] = lim

m→∞E [
1

m2 ∣R
pr .fwd
k,n (Z2

) ∩ Γm∣]

Probabilistic forwarding on the
m ×m grid, Γm

Probabilistic forwarding on the
Z2 lattice

24 / 29



Proof sketch
We want to show,

lim
m→∞E [

1
m2 ∣R

pr .fwd
k,n (Γm)∣] =

n
∑
t=k

t
∑
j=k

(
n
t
)(

t
j
)(θ+(p))t+j

(1 − θ+(p))n−j .

Step 1: Rpr .fwd
k,n (Z2) ∶= {sites that receive at least k out of n pkts on Z2}

lim
m→∞E [

1
m2 ∣R

pr .fwd
k,n (Γm)∣] = lim

m→∞E [
1

m2 ∣R
pr .fwd
k,n (Z2

) ∩ Γm∣]

Step 2: Let Rperc
k,n (Z2) ∶= {sites that are in at least k out of n C+s}

Using ergodicity, we show that for p > pc ,

lim
m→∞E

⎡
⎢
⎢
⎢
⎢
⎣

∣R
perc
k,n (Z2) ∩ Γm∣

m2

⎤
⎥
⎥
⎥
⎥
⎦

=
n
∑
j=k

(
n
j
)(θ+(p))j

(1 − θ+(p))n−j

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

.

≡ θ+k,n(p).

Recall:
▸ θ+(p) = P(0 ∈ C+)

▸ lim
m→∞

∣C+∩Γm ∣
m2 = θ+(p) a.s.
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.

≡ θ+k,n(p).

Step 3: Carefully relate Rpr .fwd
k,n (Z2) and Rperc

k,n (Z2) to obtain,

lim
m→∞E [

1
m2 ∣R

pr .fwd
k,n (Z2

) ∩ Γm∣] =
n
∑
t=k
∑

T⊆[n]∶
∣T ∣=t

θ+k,t(p)(θ+(p))t
(1 − θ+(p))n−t .
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Some bounds
It can be shown that

n
∑
t=k

t
∑
j=k

(
n
t
)(

t
j
)(θ+(p))t+j

(1 − θ+(p))n−j
= Pr(Y ≥ k)

where Y ∼ Bin (n, (θ+(p))2). So, for large grids, we have

pk,n,δ = inf{p ∶ Pr(Y ≥ k) ≥ 1 − δ} and τk,n,δ ≈ nm2 θ
2(pk,n,δ)

pk,n,δ
.
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Other graphs
Lattices- triangular, hexagonal.

Random geometric graphs
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Thank you
,
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