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Motivating example

Sensors in a field Network of loT nodes
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Update sensing parameters Over-the-air programming of the
among all nodes nodes

Broadcast information with the following constraints

Nodes: Algorithm:
» Energy constrained » Completely
» Limited computational ability distributed

» Limited knowledge of the network » Run in finite time
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Abstraction

» Broadcast over an ad-hoc network

A network of nodes G = (V, E).
|V|=N.

A source node s has k data packets to
be broadcast to all the other nodes in
an ad-hoc network.

Flooding
» Each node forwards every » Total number of transmissions
received packet to all its — kN.
one-hop neighbours. » Wasteful *: nodes will receive
» Subsequent receptions of the same packet multiple times

same packet are neglected.

1
Y.-C. Tseng, S.-Y. Ni, Y.-S. Chen, and J.-P. Sheu, “The broadcast storm problem in a mobile ad hoc
network," Wireless Networks, vol. 8, no. 2/3, pp. 153-167, 2002.



Probabilistic forwarding

» Retransmission probability p.

» Source transmits all k packets to all its neighbors.

» Each node, upon receiving packet #j for the first time,
forwards it to all its neighbours with probability p; does
nothing with probability 1 - p.

» Subsequent receptions of the same packet are neglected.

1
Y. Sasson, D. Cavin, and A. Schiper, “Probabilistic broadcast for flooding in wireless mobile ad hoc
networks," in Proc. IEEE Wireless Communications and Networking Conf. (WCNC) 2003, vol. 2, March 16-20,
2003, pp. 1124-1130.

1
Z. J. Haas, J. Y. Halpern, and L. Li, “Gossip-based ad hoc routing," IEEE/ACM Trans. Networking, vol. 14,
no. 3, pp. 479-491, 2006.
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Probablistic forwarding
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Probabilistic forwarding

Lesser number of
transmissions (kNp)
compared to flooding

(kN).

Information lost even if a
BUT single packet out of the k
packets is not received.



Introducing Coded Packets
Coding:

» The source node encodes the k data packets into n coded
packets using a Maximum Distance Separable (MDS) code.
» MDS code ensures that reception of any k of the n coded

packets by any node, suffices to recover the original k data
packets.

Probabilistic forwarding of coded packets:

» Source node transmits all n coded packets to its one-hop
neighbours.

» Thereafter, the probabilistic forwarding protocol takes over.
Each packet is forwarded independently of other packets and
other nodes.

» Nodes which receive at least k out of n packets are termed
successful receivers

» A near-broadcast is when the expected fraction of successful
receivers is > 1 — 9.



[llustration
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Packet 2 Packet 3
» k=2,n=3
» 0 - Received and transmitted the
packet.
» @ - Received but did not transmit
the packet.

» @ - Did not receive the packet.
» @ - Successful receivers

Successful receivers



Formal Problem Statement

Given:

» a connected graph G with N nodes
» number of data packets, k

» number of coded packets, n

» 0 close to 0.

» retransmission probability p

Define

» Ri.n = # nodes that receive at least k out of n coded packets

Want to find
* Pk.n,s = minimum p such that EP[% Rin]>1-96
> Tkno = Ep, , ;[total # transmissions over all N nodes of G]

On what graphs is coding along with probabilistic forwarding
beneficial?



On well-connected graphs

k =100 packets and § = 0.1
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31 x 31 grid

0.6 . . . \
100 120 140 160 180 200

Number of coded packets (n)

1. pk,ne decreases (to 0) as n
Minimum forwarding probability

increases: for fixed k and 9.

2. Tino = 2fq Tj, where T; is o
the expected number of 85 ‘ ‘ ‘ mrary
transmissions of packet i. )

75+
» Each term T; decreases as
. . 7 : : : :
n increases since pg.n s 100 120 140 160 180 200
Y Number of coded packets (n)
decreases.

» The number of terms in Expected total number of transmissions

the above equation
increases with n.



Why py.ns N 07

Ri.n = # nodes that receive at least k out of n coded packets.
Prns = inf{p | Ep[ 5 Rin] 21 -6}

! 2 3 nik

» For j=1,2,---,[ 2], let A; be the event that the jth set of k
coded packets is received by at least 1 — /2 fraction of the
nodes.

» The events A; are mutually independent and have the same
probability of occurrence.

» For any p >0, we have P(A;) being small but strictly positive.

» Hence, P(at least one A; occurs) > 1 —§/2 for all sufficiently
large n, so that ﬁka >1-6/2 with probability at least
1-6/2.

> Thus, for any p >0, we have py , s < p for sufficiently large n.



On trees

Rooted binary tree of height H = 10 with k =100 and § =0.1
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Number of coded packets (n)

Minimum forwarding probability
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Number of coded packets (n)

Expected total number of transmissions

» Large fraction of nodes on
the leaves

» Unique path from the source
to any node on the tree

» It can be shown that

A=
Pk,n,s ® C(f)
n

for some constant ¢
dependent on H and 9.
» This gives
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which is increasing in n.



On the grid

Probabilistic forwarding on Probabilistic forwarding on
the m x m grid, [, the 72 lattice
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Site percolation on the Z?
We will see that the site lattice
percolation process on 7% is a cooocoeeeee
faithful model for the OO 000D
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probabilistic forwarding eogoec0 o0
mechanism on Z2. ISP PPIPP S|
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Site percolation on Z2 - Definitions

» Associate each vertex (site) u of Z2
with a Bernoulli(p) random variable
X,. The vertex is open if X, =1, else
closed. PPPP P

» Two open sites u and v are said to be ‘e © © &
connected by an open path (u«—v),if e eeeeeccee

. . o 0 0 0000 0o
there is a path of open sites from u to IPOPPPPPPS
v.




Site percolation on Z2- Transmitters

» Associate each vertex (site) u of Z2 with
a Bernoulli(p) random variable X,,. The
vertex is open if X, = 1; else closed.

» Two open sites v and v are said to be
connected by an open path (u«—v), if

there is a path of open sites from u to v.
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» Probabilistic forwarding of a single packet over Z? is modelled
by site percolation on Z? conditioned on the origin 0 being

open.

» Nodes transmitting the jth packet (for fixed j € [n]) may be
viewed as open sites of a site percolation process which are
connected to the origin by an open path. Call this cluster of

nodes as

> The total number of transmissions is simply >/ [C?|.



Site percolation on Z? — Receivers

> The boundary, 9C?, is the set of all closed
sites which are adjacent to a site in ij’.

» The set Cjo+ = C7udC} is called the
extended cluster of the origin.
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For site percolation on Z?, there exists p. € (0,1) s.t. for p > pc,

» There exists a unique infinite open cluster (I0C), C, almost

surely. pc ~ 0.59 for site percolation.

» Hence, there also exists a unique infinite extended cluster

(IEC), C* = CudC, as..

» O(p) := percolation probability, i.e., P(0 € C)
0" (p) =P(0 e C*)

Lemma: 6 (p) = &:).

Proof: {0€ C} ={0€ C" and 0 is open}



Ergodic theorems
For p > pc, if C is the unique I0C and C" is the unique IEC, then,

|Cmrm|

=0(p) a.s.
m*)OO
Similarly, )y
ctnrl ®
m =0"(p) a.s. o
m—)OO .
Using DCT, expected values also :

converge.
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Site percolation and probabilistic forwarding

» Prob. forwarding of a single packet over Z? is modelled by
site percolation on Z? conditioned on the origin 0 being open.

» n pkts < n independent site percolations with 0 open in all.

g Rllz,r;vad(rm) =
{sites in I, that receive at least k out of n pkts}

» We are interested in finding
pns=min{p | By |2 [RE,™(Tm)| 215}



Site percolation and probabilistic forwarding

» Prob. forwarding of a single packet over Z? is modelled by
site percolation on Z? conditioned on the origin 0 being open.

» n pkts < n independent site percolations with 0 open in all.

fd
Rifnw (rm) =
{sites in [, that receive at least k out of n pkts}

v

» We are interested in finding
pns=min{p | By |2 [RE,™(Tm)| 215}

For p > pc, we have

i E[%mf;jjwd(rmn] .S ('t’)(;)(9+(p))”f(1—0+(p))"‘f

m— oo t=k j=k

<




Total transmissions

Consider the transmissions of a single packet on Z?2

» C° := open cluster containing 0 (set of transmitters)

» The expected number of transmissions on a large grid, [, is
given by E[|C°nT || 0isopen].

Proposition

For p > pc, we have

2
lim iIE[|C°ﬁFm| | 0 is open] = @

m— oo m2

» Hence, for n coded packets, with each packet being
transmitted with probability px s > pc, we obtain

292(pk,n,6)
Tkons & NM°——"=,

Pk,n,s



Comparison with simulation results
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Proof sketch

We want to show,

im B[ RE )] = zz( )(5)o o e,

m— oo

Step 1: RZTHde(Zz) := {sites that receive at least k out of n pkts on Z?}

lim ]E[ IRE" fwd(rm)|]: lim E[ SIRY: fW"(Z?)mrm|]

m— oo

Probabilistic forwarding on the Probabilistic forwarding on the
mx m grid, [, 72 lattice
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Proof sketch

We want to show,

lim B[R] - tiki(’t’)(j)w*(p»“f(l—fﬁ(p))”f.

Step 1: RY"™9(72) := {sites that receive at least k out of n pkts on Z2}
k,n
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Probabilistic forwarding on the

Probabilistic forwarding on the
mx m grid, [,

772 lattice
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Proof sketch

We want to show,

lim E[ RE (T, ] Zi()( )(9+ ) (1= 6% (p))".

m— oo

Step 1: RY, 9 (72) = {sites that receive at least k out of n pkts on Z2}

m—oo

im B[ RET)] = tim B[ RE @2 ]

Step 2: Let Rperc(Zz) = {sites that are in at least k out of n C*s}
Using ergod|C|ty, we show that for p > p,

lim E{R”e"%) n rm|] n

> (M@ @ra-o ey

2
m v’

= 0, ,(p).

N
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Proof sketch

We want to show,

lim E[ RE (T, ] Zi()( )(9+ ) (1= 6% (p))".

m— oo

Step 1: RY, 9 (72) = {sites that receive at least k out of n pkts on Z2}

m—oo

im B[ RET)] = tim B[ RE @2 ]

Step 2: Let R{“°(Z?) := {sites that are in at least k out of n C*s}
Using ergodicity, we show that for p > p.,

lim E{R”e”(% n rm|} n

> (7)o ey a-o ey

2
m =k

= 07.,(p).
Recall:
> 07(p) =P(0eCY)
> lim |('-tanr"’l:W(p) a.s.

m—oo



Proof sketch

We want to show,

lim E[ RE (T, ] Zi()( )(e+ ) (1= 6% (p))".

m— oo

Step 1: RY, 9 (72) = {sites that receive at least k out of n pkts on Z2}

m—oo

im B[ RET)] = tim B[ RE @2 ]

Step 2: Let Rperc(Zz) = {sites that are in at least k out of n C*s}
Using ergod|C|ty, we show that for p > p,

lim E{R”e"%) n rm|] n

> (M@ @ra-o ey

2
m v’

= 0, ,(p)-
Step 3: Carefully relate Rff;,de(ZQ) and R} (Z?) to obtain,

n

Jm B[ S REE)0Tl]= 2 3 0L p)0 () (-8 ()
=k



Some bounds

It can be shown that

3

t=k j=k

() C)e @ a-em@n = Privzk)

where Y ~ Bin(n, (6" (p))?). So, for large grids, we have

=i : >k)>1-4} ~
Pi.ns =inf{p: Pr(Y >k)>1-6} and 7y ns nm
Pk,n,s
0.9 T T
I=Perg =Min{p: P(Bin(n,( 0 () H)>=k)>=1- 3}
085 © lower bound
08 upper bound
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Number of coded packets (n)
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* lower bound
80 upper bound
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651 n n " B
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Number of coded packets (n)
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Other graphs

Lattices- triangular, hexagonal.
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Random geometric graphs Random regular graphs




Thank you
©



