Probabilistic forwarding of coded packets on networks

Vinay Kumar B R, Navin Kashyap
Indian Institute of Science

IEEE International Symposium on Information Theory (ISIT) - 2019
11 Jul, 2019
Paris, France

Motivating example

Motivating example

Sensors in a field

Sensors in a field

Motivating example

Sensors in a field

Update sensing parameters among all nodes

Network of IoT nodes

Over-the-air programming of the nodes

Motivating example

Sensors in a field

Update sensing parameters among all nodes

Network of IoT nodes

Over-the-air programming of the nodes

Broadcast information with the following constraints

Nodes:

- Energy constrained
- Limited computational ability
- Limited knowledge of the network

Algorithm:

- Completely distributed
- Run in finite time
- Broadcast over an ad-hoc network

A network of nodes $\mathcal{G}=(V, E)$. $|V|=N$.
A source node s has k data packets to be broadcast to all the other nodes in an ad-hoc network.

Flooding

- Each node forwards every received packet to all its one-hop neighbours.
- Subsequent receptions of the same packet are neglected.
- Total number of transmissions $=k N$.
- Wasteful ${ }^{1}$: nodes will receive same packet multiple times

[^0]- Retransmission probability p.
- Source transmits all k packets to all its neighbors.
- Each node, upon receiving packet \#j for the first time, forwards it to all its neighbours with probability p; does nothing with probability $1-p$.
- Subsequent receptions of the same packet are neglected.

[^1]Probablistic forwarding

Probablistic forwarding

Lesser number of transmissions ($k N p$) compared to flooding ($k N$).

Information lost even if a
BUT single packet out of the k packets is not received.

Introducing Coded Packets

Coding:

- The source node encodes the k data packets into n coded packets using a Maximum Distance Separable (MDS) code.
- MDS code ensures that reception of any k of the n coded packets by any node, suffices to recover the original k data packets.

Probabilistic forwarding of coded packets:

- Source node transmits all n coded packets to its one-hop neighbours.
- Thereafter, the probabilistic forwarding protocol takes over. Each packet is forwarded independently of other packets and other nodes.
- Nodes which receive at least k out of n packets are termed successful receivers
- A near-broadcast is when the expected fraction of successful receivers is $\geq 1-\delta$.

Packet 1

Successful receivers

Packet 2

Packet 3

- $k=2, n=3$
- 0 - Received and transmitted the packet.
- - Received but did not transmit the packet.
- - Did not receive the packet.
- - - Successful receivers

Given:

- a connected graph \mathcal{G} with N nodes
- number of data packets, k
- number of coded packets, n
- δ close to 0 .
- retransmission probability p

Define

- $R_{k, n}=\#$ nodes that receive at least k out of n coded packets

Want to find

- $p_{k, n, \delta}=$ minimum p such that $\mathbb{E}_{p}\left[\frac{1}{N} R_{k, n}\right] \geq 1-\delta$
- $\tau_{k, n, \delta}=\mathbb{E}_{p_{k, n, \delta}}[$ total $\#$ transmissions over all N nodes of $\mathcal{G}]$

On what graphs is coding along with probabilistic forwarding beneficial?

On well-connected graphs

$$
31 \times 31 \text { grid }
$$

1. $p_{k, n, \delta}$ decreases (to 0) as n increases; for fixed k and δ.
2. $\tau_{k, n, \delta}=\sum_{i=1}^{n} T_{i}$, where T_{i} is the expected number of transmissions of packet i.

- Each term T_{i} decreases as n increases since $p_{k, n, \delta}$ decreases.
- The number of terms in the above equation increases with n.

$$
k=100 \text { packets and } \delta=0.1
$$

Minimum forwarding probability

Expected total number of transmissions
$R_{k, n}=\#$ nodes that receive at least k out of n coded packets.
$p_{k, n, \delta}=\inf \left\{p \left\lvert\, \mathbb{E}_{p}\left[\frac{1}{N} R_{k, n}\right] \geq 1-\delta\right.\right\}$

- For $j=1,2, \cdots,\left\lfloor\frac{n}{k}\right\rfloor$, let A_{j} be the event that the j th set of k coded packets is received by at least $1-\delta / 2$ fraction of the nodes.
- The events A_{j} are mutually independent and have the same probability of occurrence.
- For any $p>0$, we have $P\left(A_{j}\right)$ being small but strictly positive.
- Hence, P (at least one A_{j} occurs) $\geq 1-\delta / 2$ for all sufficiently large n, so that $\frac{1}{N} R_{k, n} \geq 1-\delta / 2$ with probability at least $1-\delta / 2$.
- Thus, for any $p>0$, we have $p_{k, n, \delta} \leq p$ for sufficiently large n.

On trees

Rooted binary tree of height $H=10$ with $k=100$ and $\delta=0.1$

Minimum forwarding probability

Expected total number of transmissions

- Large fraction of nodes on the leaves
- Unique path from the source to any node on the tree
- It can be shown that

$$
p_{k, n, \delta} \approx c\left(\frac{k}{n}\right)^{\frac{1}{H-1}}
$$

for some constant c dependent on H and δ.

- This gives
$\tau_{k, n, \delta} \approx n \frac{(2 c)^{H}\left(\frac{k}{n}\right)^{\frac{H}{H-1}}-1}{2 c\left(\frac{k}{n}\right)^{\frac{1}{H-1}}-1}$
which is increasing in n.

Probabilistic forwarding on the $m \times m$ grid, Γ_{m}

We will see that the site percolation process on \mathbb{Z}^{2} is a faithful model for the probabilistic forwarding mechanism on \mathbb{Z}^{2}.

Probabilistic forwarding on the \mathbb{Z}^{2} lattice

\downarrow
Site percolation on the \mathbb{Z}^{2} lattice

- Associate each vertex (site) u of \mathbb{Z}^{2} with a $\operatorname{Bernoulli}(p)$ random variable X_{u}. The vertex is open if $X_{u}=1$; else closed.
- Two open sites u and v are said to be connected by an open path ($u \longleftrightarrow v$), if there is a path of open sites from u to v.

- Associate each vertex (site) u of \mathbb{Z}^{2} with a Bernoulli (p) random variable X_{u}. The vertex is open if $X_{u}=1$; else closed.
- Two open sites u and v are said to be connected by an open path ($u \longleftrightarrow v$), if there is a path of open sites from u to v.

- Probabilistic forwarding of a single packet over \mathbb{Z}^{2} is modelled by site percolation on \mathbb{Z}^{2} conditioned on the origin $\mathbf{0}$ being open.
- Nodes transmitting the j th packet (for fixed $j \in[n]$) may be viewed as open sites of a site percolation process which are connected to the origin by an open path. Call this cluster of nodes as C_{j}°.
- The total number of transmissions is simply $\sum_{j=1}^{n}\left|C_{j}^{o}\right|$.
- The boundary, ∂C_{j}^{o}, is the set of all closed sites which are adjacent to a site in C_{j}^{o}.
- The set $C_{j}^{o+}:=C_{j}^{o} \cup \partial C_{j}^{o}$ is called the extended cluster of the origin.

For site percolation on \mathbb{Z}^{2}, there exists $p_{c} \in(0,1)$ s.t. for $p>p_{c}$,

- There exists a unique infinite open cluster (IOC), C, almost surely. $p_{c} \approx 0.59$ for site percolation.
- Hence, there also exists a unique infinite extended cluster $(I E C), C^{+}=C \cup \partial C$, a.s..
- $\theta(p):=$ percolation probability, i.e., $\mathbb{P}(\mathbf{0} \in C)$
$\theta^{+}(p):=\mathbb{P}\left(\mathbf{0} \in C^{+}\right)$
Lemma: $\theta^{+}(p)=\frac{\theta(p)}{p}$.
Proof: $\{\mathbf{0} \in C\}=\left\{\mathbf{0} \in C^{+}\right.$and $\mathbf{0}$ is open $\}$

Ergodic theorems

For $p>p_{c}$, if C is the unique IOC and C^{+}is the unique IEC, then,

$$
\lim _{m \rightarrow \infty} \frac{\left|C \cap \Gamma_{m}\right|}{m^{2}}=\theta(p) \quad \text { a.s. }
$$

Similarly,
$\lim _{m \rightarrow \infty} \frac{\left|C^{+} \cap \Gamma_{m}\right|}{m^{2}}=\theta^{+}(p) \quad$ a.s.
Using DCT, expected values also converge.

- Prob. forwarding of a single packet over \mathbb{Z}^{2} is modelled by site percolation on \mathbb{Z}^{2} conditioned on the origin $\mathbf{0}$ being open.
- n pkts $\leftrightarrow n$ independent site percolations with $\mathbf{0}$ open in all.
- $\mathcal{R}_{k, n}^{\text {pr.fwd }}\left(\Gamma_{m}\right):=$
\{sites in Γ_{m} that receive at least k out of n pkts \}
- We are interested in finding

$$
p_{k, n, \delta}=\min \left\{p \left\lvert\, \mathbb{E}_{p}\left[\frac{1}{m^{2}}\left|\mathcal{R}_{k, n}^{\text {pr.fwd }}\left(\Gamma_{m}\right)\right|\right] \geq 1-\delta\right.\right\}
$$

- Prob. forwarding of a single packet over \mathbb{Z}^{2} is modelled by site percolation on \mathbb{Z}^{2} conditioned on the origin $\mathbf{0}$ being open.
- n pkts $\leftrightarrow n$ independent site percolations with $\mathbf{0}$ open in all.
- $\mathcal{R}_{k, n}^{\text {pr.fud }}\left(\Gamma_{m}\right):=$
\{sites in Γ_{m} that receive at least k out of n pkts \}
- We are interested in finding

$$
p_{k, n, \delta}=\min \left\{p \left\lvert\, \mathbb{E}_{p}\left[\frac{1}{m^{2}}\left|\mathcal{R}_{k, n}^{p r . f w d}\left(\Gamma_{m}\right)\right|\right] \geq 1-\delta\right.\right\}
$$

Theorem

For $p>p_{c}$, we have

$$
\lim _{m \rightarrow \infty} \mathbb{E}\left[\frac{1}{m^{2}}\left|\mathcal{R}_{k, n}^{p r . f w d}\left(\Gamma_{m}\right)\right|\right]=\sum_{t=k}^{n} \sum_{j=k}^{t}\binom{n}{t}\binom{t}{j}\left(\theta^{+}(p)\right)^{t+j}\left(1-\theta^{+}(p)\right)^{n-j}
$$

Consider the transmissions of a single packet on \mathbb{Z}^{2}

- $C^{0}:=$ open cluster containing 0 (set of transmitters)
- The expected number of transmissions on a large grid, Γ_{m}, is given by $\mathbb{E}\left[\left|C^{\circ} \cap \Gamma_{m}\right| \mid 0\right.$ is open $]$.

Proposition

For $p>p_{c}$, we have

$$
\lim _{m \rightarrow \infty} \frac{1}{m^{2}} \mathbb{E}\left[\left|C^{\circ} \cap \Gamma_{m}\right| \mid \mathbf{0} \text { is open }\right]=\frac{\theta(p)^{2}}{p} .
$$

- Hence, for n coded packets, with each packet being transmitted with probability $p_{k, n, \delta}>p_{c}$, we obtain

$$
\tau_{k, n, \delta} \approx n m^{2} \frac{\theta^{2}\left(p_{k, n, \delta}\right)}{p_{k, n, \delta}}
$$

Comparison with simulation results

We want to show,

$$
\lim _{m \rightarrow \infty} \mathbb{E}\left[\frac{1}{m^{2}}\left|\mathcal{R}_{k, n}^{p r . f w d}\left(\Gamma_{m}\right)\right|\right]=\sum_{t=k}^{n} \sum_{j=k}^{t}\binom{n}{t}\binom{t}{j}\left(\theta^{+}(p)\right)^{t+j}\left(1-\theta^{+}(p)\right)^{n-j}
$$

Step 1: $\mathcal{R}_{k, n}^{\text {pr.fwd }}\left(\mathbb{Z}^{2}\right):=\left\{\right.$ sites that receive at least k out of n pkts on $\left.\mathbb{Z}^{2}\right\}$

$$
\lim _{m \rightarrow \infty} \mathbb{E}\left[\frac{1}{m^{2}}\left|\mathcal{R}_{k, n}^{p r . f w d}\left(\Gamma_{m}\right)\right|\right]=\lim _{m \rightarrow \infty} \mathbb{E}\left[\frac{1}{m^{2}}\left|\mathcal{R}_{k, n}^{p r . f w d}\left(\mathbb{Z}^{2}\right) \cap \Gamma_{m}\right|\right]
$$

Probabilistic forwarding on the

$$
m \times m \text { grid, } \Gamma_{m}
$$

Probabilistic forwarding on the \mathbb{Z}^{2} lattice

We want to show,

$$
\lim _{m \rightarrow \infty} \mathbb{E}\left[\frac{1}{m^{2}}\left|\mathcal{R}_{k, n}^{p r . f w d}\left(\Gamma_{m}\right)\right|\right]=\sum_{t=k}^{n} \sum_{j=k}^{t}\binom{n}{t}\binom{t}{j}\left(\theta^{+}(p)\right)^{t+j}\left(1-\theta^{+}(p)\right)^{n-j}
$$

Step 1: $\mathcal{R}_{k, n}^{\text {pr.fwd }}\left(\mathbb{Z}^{2}\right):=\left\{\right.$ sites that receive at least k out of n pkts on $\left.\mathbb{Z}^{2}\right\}$

$$
\lim _{m \rightarrow \infty} \mathbb{E}\left[\frac{1}{m^{2}}\left|\mathcal{R}_{k, n}^{p r . f w d}\left(\Gamma_{m}\right)\right|\right]=\lim _{m \rightarrow \infty} \mathbb{E}\left[\frac{1}{m^{2}}\left|\mathcal{R}_{k, n}^{p r . f w d}\left(\mathbb{Z}^{2}\right) \cap \Gamma_{m}\right|\right]
$$

Probabilistic forwarding on the $m \times m$ grid, Γ_{m}

Probabilistic forwarding on the

We want to show,

$$
\lim _{m \rightarrow \infty} \mathbb{E}\left[\frac{1}{m^{2}}\left|\mathcal{R}_{k, n}^{p r . f w d}\left(\Gamma_{m}\right)\right|\right]=\sum_{t=k}^{n} \sum_{j=k}^{t}\binom{n}{t}\binom{t}{j}\left(\theta^{+}(p)\right)^{t+j}\left(1-\theta^{+}(p)\right)^{n-j}
$$

Step 1: $\mathcal{R}_{k, n}^{\text {pr.fud }}\left(\mathbb{Z}^{2}\right):=\left\{\right.$ sites that receive at least k out of n pkts on $\left.\mathbb{Z}^{2}\right\}$

$$
\lim _{m \rightarrow \infty} \mathbb{E}\left[\frac{1}{m^{2}}\left|\mathcal{R}_{k, n}^{p r . f w d}\left(\Gamma_{m}\right)\right|\right]=\lim _{m \rightarrow \infty} \mathbb{E}\left[\frac{1}{m^{2}}\left|\mathcal{R}_{k, n}^{p r . f w d}\left(\mathbb{Z}^{2}\right) \cap \Gamma_{m}\right|\right]
$$

Step 2: Let $\mathcal{R}_{k, n}^{\text {perc }}\left(\mathbb{Z}^{2}\right):=\left\{\right.$ sites that are in at least k out of $\left.n C^{+} s\right\}$ Using ergodicity, we show that for $p>p_{c}$,

$$
\lim _{m \rightarrow \infty} \mathbb{E}\left[\frac{\left|\mathcal{R}_{k, n}^{\text {perc }}\left(\mathbb{Z}^{2}\right) \cap \Gamma_{m}\right|}{m^{2}}\right]=\underbrace{\sum_{j=k}^{n}\binom{n}{j}\left(\theta^{+}(p)\right)^{j}\left(1-\theta^{+}(p)\right)^{n-j}}_{\equiv \theta_{k, n}^{+}(p) .}
$$

We want to show,

$$
\lim _{m \rightarrow \infty} \mathbb{E}\left[\frac{1}{m^{2}}\left|\mathcal{R}_{k, n}^{p r . f w d}\left(\Gamma_{m}\right)\right|\right]=\sum_{t=k}^{n} \sum_{j=k}^{t}\binom{n}{t}\binom{t}{j}\left(\theta^{+}(p)\right)^{t+j}\left(1-\theta^{+}(p)\right)^{n-j}
$$

Step 1: $\mathcal{R}_{k, n}^{\text {pr.fud }}\left(\mathbb{Z}^{2}\right):=\left\{\right.$ sites that receive at least k out of n pkts on $\left.\mathbb{Z}^{2}\right\}$

$$
\lim _{m \rightarrow \infty} \mathbb{E}\left[\frac{1}{m^{2}}\left|\mathcal{R}_{k, n}^{p r . f w d}\left(\Gamma_{m}\right)\right|\right]=\lim _{m \rightarrow \infty} \mathbb{E}\left[\frac{1}{m^{2}}\left|\mathcal{R}_{k, n}^{p r . f w d}\left(\mathbb{Z}^{2}\right) \cap \Gamma_{m}\right|\right]
$$

Step 2: Let $\mathcal{R}_{k, n}^{\text {perc }}\left(\mathbb{Z}^{2}\right):=\left\{\right.$ sites that are in at least k out of $\left.n C^{+} s\right\}$ Using ergodicity, we show that for $p>p_{c}$,

$$
\lim _{m \rightarrow \infty} \mathbb{E}\left[\frac{\left|\mathcal{R}_{k, n}^{\text {perc }}\left(\mathbb{Z}^{2}\right) \cap \Gamma_{m}\right|}{m^{2}}\right]=\underbrace{\sum_{j=k}^{n}\binom{n}{j}\left(\theta^{+}(p)\right)^{j}\left(1-\theta^{+}(p)\right)^{n-j}}_{\equiv \theta_{k, n}^{+}(p)}
$$

Recall:

- $\theta^{+}(p)=\mathbb{P}\left(\mathbf{0} \in C^{+}\right)$
- $\lim _{m \rightarrow \infty} \frac{\left|C^{+} \cap \Gamma_{m}\right|}{m^{2}}=\theta^{+}(p) \quad$ a.s.

We want to show,

$$
\lim _{m \rightarrow \infty} \mathbb{E}\left[\frac{1}{m^{2}}\left|\mathcal{R}_{k, n}^{p r . f w d}\left(\Gamma_{m}\right)\right|\right]=\sum_{t=k}^{n} \sum_{j=k}^{t}\binom{n}{t}\binom{t}{j}\left(\theta^{+}(p)\right)^{t+j}\left(1-\theta^{+}(p)\right)^{n-j}
$$

Step 1: $\mathcal{R}_{k, n}^{\text {pr.fwd }}\left(\mathbb{Z}^{2}\right):=\left\{\right.$ sites that receive at least k out of n pkts on $\left.\mathbb{Z}^{2}\right\}$

$$
\lim _{m \rightarrow \infty} \mathbb{E}\left[\frac{1}{m^{2}}\left|\mathcal{R}_{k, n}^{p r . f w d}\left(\Gamma_{m}\right)\right|\right]=\lim _{m \rightarrow \infty} \mathbb{E}\left[\frac{1}{m^{2}}\left|\mathcal{R}_{k, n}^{p r . f w d}\left(\mathbb{Z}^{2}\right) \cap \Gamma_{m}\right|\right]
$$

Step 2: Let $\mathcal{R}_{k, n}^{\text {perc }}\left(\mathbb{Z}^{2}\right):=\left\{\right.$ sites that are in at least k out of $\left.n C^{+} s\right\}$ Using ergodicity, we show that for $p>p_{c}$,

$$
\lim _{m \rightarrow \infty} \mathbb{E}\left[\frac{\left|\mathcal{R}_{k, n}^{\text {perc }}\left(\mathbb{Z}^{2}\right) \cap \Gamma_{m}\right|}{m^{2}}\right]=\underbrace{\sum_{j=k}^{n}\binom{n}{j}\left(\theta^{+}(p)\right)^{j}\left(1-\theta^{+}(p)\right)^{n-j}}_{\equiv \theta_{k, n}^{+}(p)}
$$

Step 3: Carefully relate $\mathcal{R}_{k, n}^{\text {pr.fwd }}\left(\mathbb{Z}^{2}\right)$ and $\mathcal{R}_{k, n}^{\text {perc }}\left(\mathbb{Z}^{2}\right)$ to obtain,

$$
\lim _{m \rightarrow \infty} \mathbb{E}\left[\frac{1}{m^{2}}\left|\mathcal{R}_{k, n}^{p r . f w d}\left(\mathbb{Z}^{2}\right) \cap \Gamma_{m}\right|\right]=\sum_{t=k}^{n} \sum_{\substack{T \subseteq[n]: \\|T|=t}} \theta_{k, t}^{+}(p)\left(\theta^{+}(p)\right)^{t}\left(1-\theta^{+}(p)\right)^{n-t}
$$

It can be shown that

$$
\sum_{t=k}^{n} \sum_{j=k}^{t}\binom{n}{t}\binom{t}{j}\left(\theta^{+}(p)\right)^{t+j}\left(1-\theta^{+}(p)\right)^{n-j}=\operatorname{Pr}(Y \geq k)
$$

where $Y \sim \operatorname{Bin}\left(n,\left(\theta^{+}(p)\right)^{2}\right)$. So, for large grids, we have

$$
p_{k, n, \delta}=\inf \{p: \operatorname{Pr}(Y \geq k) \geq 1-\delta\} \text { and } \tau_{k, n, \delta} \approx n m^{2} \frac{\theta^{2}\left(p_{k, n, \delta}\right)}{p_{k, n, \delta}}
$$

Lattices- triangular, hexagonal.

Random geometric graphs

Random regular graphs

Thank you

©

[^0]: ${ }^{1}$ Y.-C. Tseng, S.-Y. Ni, Y.-S. Chen, and J.-P. Sheu, "The broadcast storm problem in a mobile ad hoc network," Wireless Networks, vol. 8, no. 2/3, pp. 153-167, 2002.

[^1]: ${ }^{1}$ Y. Sasson, D. Cavin, and A. Schiper, "Probabilistic broadcast for flooding in wireless mobile ad hoc networks," in Proc. IEEE Wireless Communications and Networking Conf. (WCNC) 2003, vol. 2, March 16-20, 2003, pp. 1124-1130.
 ${ }^{1}$ Z. J. Haas, J. Y. Halpern, and L. Li, "Gossip-based ad hoc routing," IEEE/ACM Trans. Networking, vol. 14, no. 3, pp. 479-491, 2006.

