
Community detection on block models with
geometric kernels

B R Vinay Kumar
Joint work with

Konstantin Avrachenkov and Lasse Leskelä

Workshop on Modelling and Mining Networks (WAW 2024)
June 6, 2024

Warsaw, Poland

1 / 17

Motivation

I Networks exhibiting geometric structure.

I Social networks: friends of friends are friends

I Collaboration networks

2 / 17

Motivation

I Networks exhibiting geometric structure.

I Social networks: friends of friends are friends

I Collaboration networks

2 / 17

Motivation

I Networks exhibiting geometric structure.

I Social networks: friends of friends are friends

I Collaboration networks

2 / 17

Motivation

I Networks exhibiting geometric structure.

I Social networks: friends of friends are friends

I Collaboration networks

2 / 17

Model

S =
(
−1
2 ,

1
2

]d

N ∼ Poi(λn)

I Poisson point process X = (Xu)N
u=1 of

intensity λn.

I Two communities: σ = (σ(1), · · · , σ(N))

P(σ(u) = +1) = P(σ(u) = −1) = 1
2

I Connection functions
fin(·), fout(·) : S× S→ [0, 1]

Given locations X and communities σ

Auv = 1
{

w.p. fin(Xu,Xv) if σ(u) = σ(v)
w.p. fout(Xu,Xv) if σ(u) 6= σ(v)

Here, fin and fout are functions of the distance d(Xu,Xv).

3 / 17

Model

S =
(
−1
2 ,

1
2

]d

N ∼ Poi(λn)

I Poisson point process X = (Xu)N
u=1 of

intensity λn.
I Two communities: σ = (σ(1), · · · , σ(N))

P(σ(u) = +1) = P(σ(u) = −1) = 1
2

I Connection functions
fin(·), fout(·) : S× S→ [0, 1]

Given locations X and communities σ

Auv = 1
{

w.p. fin(Xu,Xv) if σ(u) = σ(v)
w.p. fout(Xu,Xv) if σ(u) 6= σ(v)

Here, fin and fout are functions of the distance d(Xu,Xv).

3 / 17

Model

S =
(
−1
2 ,

1
2

]d

N ∼ Poi(λn)

I Poisson point process X = (Xu)N
u=1 of

intensity λn.
I Two communities: σ = (σ(1), · · · , σ(N))

P(σ(u) = +1) = P(σ(u) = −1) = 1
2

I Connection functions
fin(·), fout(·) : S× S→ [0, 1]

Given locations X and communities σ

Auv = 1
{

w.p. fin(Xu,Xv) if σ(u) = σ(v)
w.p. fout(Xu,Xv) if σ(u) 6= σ(v)

Here, fin and fout are functions of the distance d(Xu,Xv).

3 / 17

Model

S =
(
−1
2 ,

1
2

]d

N ∼ Poi(λn)

I Poisson point process X = (Xu)N
u=1 of

intensity λn.
I Two communities: σ = (σ(1), · · · , σ(N))

P(σ(u) = +1) = P(σ(u) = −1) = 1
2

I Connection functions
fin(·), fout(·) : S× S→ [0, 1]

Given locations X and communities σ

Auv = 1
{

w.p. fin(Xu,Xv) if σ(u) = σ(v)
w.p. fout(Xu,Xv) if σ(u) 6= σ(v)

Here, fin and fout are functions of the distance d(Xu,Xv).

3 / 17

Model: 1d case

Torus: S =
(
−1
2 ,

1
2

]
d(x , y) := min{|x −y |, 1−|x −y |}

I Poisson point process X = (Xu)N
u=1 of

intensity λn.
I Two communities:

σ = (σ(1), · · · , σ(N))

P(σ(u) = +1) = P(σ(u) = −1) = 1
2

I Connection functions
fin(·), fout(·) : S× S→ [0, 1]

Given locations X and communities σ

Auv = 1
{

w.p. fin(d(Xu,Xv)) if σ(u) = σ(v)
w.p. fout(d(Xu,Xv)) if σ(u) 6= σ(v)

4 / 17

Model: 1d case

Torus: S =
(
−1
2 ,

1
2

]
d(x , y) := min{|x −y |, 1−|x −y |}

I Poisson point process X = (Xu)N
u=1 of

intensity λn.
I Two communities:

σ = (σ(1), · · · , σ(N))

P(σ(u) = +1) = P(σ(u) = −1) = 1
2

I Connection functions
fin(·), fout(·) : S× S→ [0, 1]

Given locations X and communities σ

Auv = 1
{

w.p. fin(d(Xu,Xv)) if σ(u) = σ(v)
w.p. fout(d(Xu,Xv)) if σ(u) 6= σ(v)

4 / 17

Geometric kernel

I Geometric kernel
A measurable function
φ : R+ → [0, 1]

I Examples:
1. φ(x) = 1{x ≤ 1}
2. A general kernel

I fin(Xu,Xv) = pφ
(

d(Xu ,Xv)
log n

n

)
and

fout(Xu,Xv) = qφ
(

d(Xu ,Xv)
log n

n

)
,

where p > q.

5 / 17

Geometric kernel

I Geometric kernel
A measurable function
φ : R+ → [0, 1]

I Examples:
1. φ(x) = 1{x ≤ 1}
2. A general kernel

I fin(Xu,Xv) = pφ
(

d(Xu ,Xv)
log n

n

)
and

fout(Xu,Xv) = qφ
(

d(Xu ,Xv)
log n

n

)
,

where p > q.

5 / 17

Geometric kernel

I Geometric kernel
A measurable function
φ : R+ → [0, 1]

I Examples:
1. φ(x) = 1{x ≤ 1}
2. A general kernel

I fin(Xu,Xv) = pφ
(

d(Xu ,Xv)
log n

n

)
and

fout(Xu,Xv) = qφ
(

d(Xu ,Xv)
log n

n

)
,

where p > q.
Abbe, E., Baccelli, F., and Sankararaman, A.

(2021). Community detection on Euclidean random

graphs. Information and Inference: A Journal of the

IMA, 10(1), 109-160.

5 / 17

Geometric kernel

I Geometric kernel
A measurable function
φ : R+ → [0, 1]

I Examples:
1. φ(x) = 1{x ≤ 1}
2. A general kernel

I fin(Xu,Xv) = pφ
(

d(Xu ,Xv)
log n

n

)
and

fout(Xu,Xv) = qφ
(

d(Xu ,Xv)
log n

n

)
,

where p > q.

5 / 17

Geometric kernel block model

I Locations: X ∼ PPP(λn) on S

I Communities:
σ : σ(u) ∼ Unif ({−1,+1})

I Probabilities p, q ∈ [0, 1] with
p > q

I Geometric kernel: φ
Given locations X and communities σ

Auv = 1

with prob. pφ

(
d(Xu ,Xv)

log n
n

)
if σ(u) = σ(v)

with prob. qφ
(

d(Xu ,Xv)
log n

n

)
if σ(u) 6= σ(v)

A = (Auv)N
u,v=1 ∼ GKBM(λn, p, q, φ)

6 / 17

Problem formulation

A ∼ GKBM(λn, p, q, φ)
Problem: Given the locations X and the adjacency matrix A,
recover σ exactly.

I An estimate σ̂n of σn recovers the communities exactly if
lim

n→∞
P (σ̂n ∈ {±σn}) = 1

7 / 17

Main results

Define κ = supx∈Γ x , 0 < κ <∞ and

Iφ(p, q) := 2
∫
R+

[
1−√pqφ(x)−

√
(1− pφ(x))(1− qφ(x))

]
dx

Converse: If λκ < 1 or λIφ(p, q) < 1, exact recovery is not possible
using any algorithm.

Achievability: If λκ > 1 and λIφ(p, q) > 1, then there exists a
linear time algorithm (in the number of edges) achieving
exact-recovery.

8 / 17

Impossibility: Idea

If λκ < 1 or λIφ(p, q) < 1, exact recovery is not possible

Iφ(p, q) := 2
∫
R+

[
1−√pqφ(x)−

√
(1− pφ(x))(1− qφ(x))

]
dx

I Genie based estimator: Log likelihood L(A,σ,X)∑
v∼0

σv =σ0

log (pφv0)+
∑
v∼0

σv 6=σ0

log (qφv0)+
∑
v�0

σv =σ0

log (1−pφv0)+
∑
v�0

σv 6=σ0

log (1−qφv0)

I Approximate by simple functions

9 / 17

Impossibility: Idea

If λκ < 1 or λIφ(p, q) < 1, exact recovery is not possible

Iφ(p, q) := 2
∫
R+

[
1−√pqφ(x)−

√
(1− pφ(x))(1− qφ(x))

]
dx

I Genie based estimator: Log likelihood L(A,σ,X)∑
v∼0

σv =σ0

log (pφv0)+
∑
v∼0

σv 6=σ0

log (qφv0)+
∑
v�0

σv =σ0

log (1−pφv0)+
∑
v�0

σv 6=σ0

log (1−qφv0)

I Approximate by simple functions

9 / 17

Impossibility: Idea

If λκ < 1 or λIφ(p, q) < 1, exact recovery is not possible

Iφ(p, q) := 2
∫
R+

[
1−√pqφ(x)−

√
(1− pφ(x))(1− qφ(x))

]
dx

I Genie based estimator: Log likelihood L(A,σ,X)∑
v∼0

σv =σ0

log (pφv0)+
∑
v∼0

σv 6=σ0

log (qφv0)+
∑
v�0

σv =σ0

log (1−pφv0)+
∑
v�0

σv 6=σ0

log (1−qφv0)

I Approximate by simple functions

9 / 17

Impossibility: Idea

If λκ < 1 or λIφ(p, q) < 1, exact recovery is not possible

Iφ(p, q) := 2
∫
R+

[
1−√pqφ(x)−

√
(1− pφ(x))(1− qφ(x))

]
dx

I Genie based estimator: Log-likelihood function: L(A,σ,X)

∑̀
s=1

∑
v∈Rs

∑
v∼u

σv =σu

log (pcs)+
∑
v∼u

σv 6=σu

log (qcs)+
∑
v�u

σv =σu

log (1−pcs)+
∑
v�u

σv 6=σu

log (1−qcs)

I Approximate by simple functions

10 / 17

Impossibility: Idea

If λκ < 1 or λIφ(p, q) < 1, exact recovery is not possible

Iφ(p, q) := 2
∫
R+

[
1−√pqφ(x)−

√
(1− pφ(x))(1− qφ(x))

]
dx

I Genie based estimator: Log-likelihood function: L(A,σ,X)

∑̀
s=1

∑
v∈Rs

∑
v∼u

σv =σu

log (pcs)+
∑
v∼u

σv 6=σu

log (qcs)+
∑
v�u

σv =σu

log (1−pcs)+
∑
v�u

σv 6=σu

log (1−qcs)

I Testing Poisson vectors
In Rs Neighbours Non-neighbours
Same Poi

(
λ log n

2 pcsvol(Γs)
)

Poi
(
λ log n

2 (1− pcs)vol(Γs)
)

Different Poi
(
λ log n

2 qcsvol(Γs)
)

Poi
(
λ log n

2 (1− qcs)vol(Γs)
)

I Hypothesis testing error → exp (− log n λIφ(p, q)) = n−λIφ(p,q)

I Total number of errors ≈ n1−λIφ(p,q) →∞ when λIφ(p, q) < 1.
10 / 17

Achievability

Q: Can we recover the communities exactly when λIφ(p, q) > 1?

YES !! We provide next a two phase algorithm.
Define κ = maxx∈Γ x .

Phase 1: Almost-exact recovery
I Divide into blocks of size κ log n

n
I Recover exactly in an initial block
I Propagate from a recovered block

to adjacent block and so on
Phase 2: Refinement step

11 / 17

Achievability

Q: Can we recover the communities exactly when λIφ(p, q) > 1?
YES !! We provide next a two phase algorithm.
Define κ = maxx∈Γ x .

Phase 1: Almost-exact recovery
I Divide into blocks of size κ log n

n
I Recover exactly in an initial block
I Propagate from a recovered block

to adjacent block and so on
Phase 2: Refinement step

11 / 17

Achievability

Q: Can we recover the communities exactly when λIφ(p, q) > 1?
YES !! We provide next a two phase algorithm.
Define κ = maxx∈Γ x .

Phase 1: Almost-exact recovery
I Divide into blocks of size κ log n

n
I Recover exactly in an initial block
I Propagate from a recovered block

to adjacent block and so on
Phase 2: Refinement step

11 / 17

Achievability

Q: Can we recover the communities exactly when λIφ(p, q) > 1?
YES !! We provide next a two phase algorithm.
Define κ = maxx∈Γ x .

Phase 1: Almost-exact recovery
I Divide into blocks of size κ log n

n
I Recover exactly in an initial block
I Propagate from a recovered block

to adjacent block and so on
Phase 2: Refinement step

11 / 17

Achievability

Q: Can we recover the communities exactly when λIφ(p, q) > 1?
YES !! We provide next a two phase algorithm.
Define κ = maxx∈Γ x .

Phase 1: Almost-exact recovery
I Divide into blocks of size κ log n

n
I Recover exactly in an initial block
I Propagate from a recovered block

to adjacent block and so on
Phase 2: Refinement step

11 / 17

Achievability

Q: Can we recover the communities exactly when λIφ(p, q) > 1?
YES !! We provide next a two phase algorithm.
Define κ = maxx∈Γ x .

Phase 1: Almost-exact recovery
I Divide into blocks of size κ log n

n
I Recover exactly in an initial block
I Propagate from a recovered block

to adjacent block and so on
Phase 2: Refinement step

11 / 17

Recovering the initial block

I Dense graph within the block.
I Off-the-shelf algorithms for e.g., spectral.
I Choose u0 ∈ V1 and set σ̂(u0) = +1
I Cluster using number of common neighbours of u and u0

Lemma
For any p > q and any ∆ > 0, communities of nodes in the initial
block B1 are recovered w.h.p., i.e.,

P

(⋂
u∈V1

{σ̂(u) = σ(u)}
)
≥ 1−∆n−c1 log n.

12 / 17

Recovering the initial block

I Dense graph within the block.
I Off-the-shelf algorithms for e.g., spectral.
I Choose u0 ∈ V1 and set σ̂(u0) = +1
I Cluster using number of common neighbours of u and u0

Lemma
For any p > q and any ∆ > 0, communities of nodes in the initial
block B1 are recovered w.h.p., i.e.,

P

(⋂
u∈V1

{σ̂(u) = σ(u)}
)
≥ 1−∆n−c1 log n.

12 / 17

Label propagation

I Assume that the estimated communities in block Bi are the
true communities.

I Evaluate the likelihood for every u ∈ Bi+1∑
v∈Vi

σ̂(v)
[
Auv log p (1− qψn(Xu,Xv))

q (1− pψn(Xu,Xv)) + log (1− pψn(Xu,Xv))
(1− qψn(Xu,Xv))

]

Lemma
For G ∼ GKBM(λn, p, q, φ), there exists an M ≡ M(p, q, φ) > 0
such that

P

n/κ log n⋂
i=1

{# of mistakes in Bi ≤ M}

 ≥ 1− o(1).

13 / 17

Label propagation

I Assume that the estimated communities in block Bi are the
true communities.

I Evaluate the likelihood for every u ∈ Bi+1∑
v∈Vi

σ̂(v)
[
Auv log p (1− qψn(Xu,Xv))

q (1− pψn(Xu,Xv)) + log (1− pψn(Xu,Xv))
(1− qψn(Xu,Xv))

]

Lemma
For G ∼ GKBM(λn, p, q, φ), there exists an M ≡ M(p, q, φ) > 0
such that

P

n/κ log n⋂
i=1

{# of mistakes in Bi ≤ M}

 ≥ 1− o(1).

13 / 17

Crucial idea

Ai = {at most M mistakes within block Bi}

Sacrifice on probability but have constant number of mistakes

P

n/κ log n⋂
i=1

Ai

 = P(A1)
n/κ log n∏

i=2
P
(
Ai
∣∣∣Ai−1

)

Lemma
Fix η > 0. For G ∼ GKBM(λn, p, q, φ), we have that

P
(

Total # of mistakes ≤ ηn
3κ

)
= 1− o(1).

14 / 17

Refinement step

I Evaluate g(u, σ̂) to be∑
v∈V (u)

σ̂(v)
[
Auv log p (1− qψn(Xu,Xv))

q (1− pψn(Xu,Xv)) + log 1− pψn(Xu,Xv)
1− qψn(Xu,Xv)

]
I Bound the worst case error vector
|g(u, σ̂)− g(u,σ)| ≤ βη log n for some β ≡ β(p, q, φ).

I Use simple function approximation

P(g(u, σ̂) > 0|σ(u) = −1) ≤ n
βη
2 −λn

∑`′

s=1
vol(Rs)

[
1−√pqcs−

√
(1−pcs)(1−qcs)

]
I Take η = λIφ(p,q)−1

β > 0 and using union bound

P(∃u : σ̃(u) 6= σ(u)) = o(1)

15 / 17

Refinement step

I Evaluate g(u, σ̂) to be∑
v∈V (u)

σ̂(v)
[
Auv log p (1− qψn(Xu,Xv))

q (1− pψn(Xu,Xv)) + log 1− pψn(Xu,Xv)
1− qψn(Xu,Xv)

]
I Bound the worst case error vector
|g(u, σ̂)− g(u,σ)| ≤ βη log n for some β ≡ β(p, q, φ).

I Use simple function approximation

P(g(u, σ̂) > 0|σ(u) = −1) ≤ n
βη
2 −λn

∑`′

s=1
vol(Rs)

[
1−√pqcs−

√
(1−pcs)(1−qcs)

]
I Take η = λIφ(p,q)−1

β > 0 and using union bound

P(∃u : σ̃(u) 6= σ(u)) = o(1)

15 / 17

Refinement step

I Evaluate g(u, σ̂) to be∑
v∈V (u)

σ̂(v)
[
Auv log p (1− qψn(Xu,Xv))

q (1− pψn(Xu,Xv)) + log 1− pψn(Xu,Xv)
1− qψn(Xu,Xv)

]
I Bound the worst case error vector
|g(u, σ̂)− g(u,σ)| ≤ βη log n for some β ≡ β(p, q, φ).

I Use simple function approximation

P(g(u, σ̂) > 0|σ(u) = −1) ≤ n
βη
2 −λn

∑`′

s=1
vol(Rs)

[
1−√pqcs−

√
(1−pcs)(1−qcs)

]
I Take η = λIφ(p,q)−1

β > 0 and using union bound

P(∃u : σ̃(u) 6= σ(u)) = o(1)

15 / 17

Refinement step

I Evaluate g(u, σ̂) to be∑
v∈V (u)

σ̂(v)
[
Auv log p (1− qψn(Xu,Xv))

q (1− pψn(Xu,Xv)) + log 1− pψn(Xu,Xv)
1− qψn(Xu,Xv)

]
I Bound the worst case error vector
|g(u, σ̂)− g(u,σ)| ≤ βη log n for some β ≡ β(p, q, φ).

I Use simple function approximation

P(g(u, σ̂) > 0|σ(u) = −1) ≤ n
βη
2 −λn

∑`′

s=1
vol(Rs)

[
1−√pqcs−

√
(1−pcs)(1−qcs)

]
I Take η = λIφ(p,q)−1

β > 0 and using union bound

P(∃u : σ̃(u) 6= σ(u)) = o(1)

15 / 17

Conclusions and Future Work

I Introduced block models with geometric kernels.

I Information metric Iφ(p, q) governs community recovery.

I λIφ(p, q) < 1 or λκ < 1: exact recovery not possible

I λIφ(p, q) > 1 and λκ > 1: linear time algorithm for
community recovery

I Multiple communities

I Higher dimensions

Thank you !!
Community Detection on

Block Models with
Geometric Kernels

arxiv.org/abs/2403.02802

16 / 17

Conclusions and Future Work

I Introduced block models with geometric kernels.

I Information metric Iφ(p, q) governs community recovery.

I λIφ(p, q) < 1 or λκ < 1: exact recovery not possible

I λIφ(p, q) > 1 and λκ > 1: linear time algorithm for
community recovery

I Multiple communities

I Higher dimensions

Thank you !!
Community Detection on

Block Models with
Geometric Kernels

arxiv.org/abs/2403.02802

16 / 17

Thank you !!

17 / 17

