A local-to-global perspective
NETWORKS Training week
April 9, 2025
Kaap Doorn, Netherlands
Interactions depend on:
Torus \( S=\left[\frac{-1}{2},\frac{1}{2}\right]^d\)
\(\mathbf{A}\) \(\sim GKBM(\lambda,n,d,\kappa_{\text{in}},\kappa_{\text{out}})\)
Given locations \(\mathbb{X}\), weights \(\mathbf{W}\) and communities \(\sigma\)
\[A_{uv}=1 \text{ w.p. }\begin{cases} \kappa_{\text{in}}\big(\alpha_{n,d}\|X_u-X_v\|,W_u,W_v\big) & \text{if } \sigma(u)=\sigma(v)\\ \kappa_{\text{out}}\big(\alpha_{n,d}\|X_u-X_v\|,W_u,W_v\big) & \text{if } \sigma(u) \neq \sigma(v) \end{cases}\]
\(\mathbf{A}\) \(\sim GKBM(\lambda,n,d,\kappa_{\text{in}},\kappa_{\text{out}})\)
Problem: Given the locations \(\mathbb{X}\), the weights \(\mathbf{W}\) and the graph \(\mathbf{A}\), recover \( \sigma_n\) exactly.
\(\mathbf{A}\) \(\sim GKBM(\lambda,n,d,\kappa_{\text{in}},\kappa_{\text{out}})\)
Problem: Given locations \(\mathbb{X}\), weights \(\mathbf{W}\), and graph \(\mathbf{A}\), recover \( \sigma_n\) exactly.
Torus \( S=\left[\frac{-1}{2},\frac{1}{2}\right]^d\)
\(\mathbf{A}\) \(\sim GKBM(\lambda,n,d,\kappa_{\text{in}},\kappa_{\text{out}})\)
Torus \( S=\left[\frac{-1}{2},\frac{1}{2}\right]\)
\(\mathbf{A}\) \(\sim GKBM(\lambda,n,p,q,\varphi)\)
Given locations \(\mathbb{X}\) and communities \( \sigma\)
\[A_{uv}=1 \text{ w.p. }\begin{cases} p \varphi\Big(\|X_u-X_v\|\Big) & \text{if } \sigma(u)=\sigma(v)\\ q \varphi \Big(\|X_u-X_v\|\Big) & \text{if } \sigma(u) \neq \sigma(v) \end{cases}\]